Please wait a minute...
93TMR Cancer  2019, Vol. 2 Issue (1): 143-150    DOI: 10.12032/TMRC201800046
Cancer Biology     
Advances in research on tumor microenvironment of hepatocellular carcinoma
Gao Li1, Dong-Xin Tang1, Feng-Xi Long1, Zhu Yang1,*()
1Guiyang College of Traditional Chinese Medicine, Guiyang 550002, China.
Download: HTML     PDF(649KB)
Export: BibTeX | EndNote (RIS)      


Chinese and Western medicine have different understandings of the tumor microenvironment and different treatment methods.

Editor’s Summary

The concept of the tumor microenvironment has been widely accepted. In the theory of Chinese and Western medicine, the concept of tumor microenvironment is similar, but there are still differences. Tumor treatment strategies for tumor microenvironment are receiving increasing attention.


Modern medical research on cancer shows that hepatocellular carcinoma (HCC) is related to tumor microenvironment. Studying the relationship between tumor microenvironment and HCC can be used as a new research direction to provide more strategies and ideas for the prevention and treatment of HCC. This article describes the characteristics of tumor microenvironment, cytokines, related signaling pathways, the occurrence and development of traditional Chinese medicine and HCC, and treatment-related knowledge.


Key wordsHepatocellular carcinoma      Tumor microenvironment      Traditional Chinese medicine      Signaling pathway      Treatment     
Published: 05 March 2019
Fund:  National Natural Science Foundation of China (81673862);Science and Technology Support Program of Guizhou Province (Social Development Research) (Qiankehe SY [2014] 3026);High-level Innovative Talents Training Program of Guizhou Province (100 levels) (Qiankehe (2016)4032);Guizhou Yangzhu “Traditional Chinese Medicine Oncology” graduate tutor studio (Qian Jiaoyanhe GZS [2016]08).
Corresponding Authors: Yang Zhu     E-mail:
About author: #These authors contributed equally to this work
Cite this article:

Gao Li, Dong-Xin Tang, Feng-Xi Long, Zhu Yang. Advances in research on tumor microenvironment of hepatocellular carcinoma. 93TMR Cancer, 2019, 2(1): 143-150. doi: 10.12032/TMRC201800046

URL:     OR

1.   Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepat Internat 2017, 11: 1-54.
doi: 10.1007/s12072-017-9799-9 pmid: 5491694
2.   Spano D, Zollo M.Tumor microenvironment: a main actor in the metastasis process. Clin Exper Metastasis 2012, 29: 381-395.
doi: 10.1007/s10585-012-9457-5 pmid: 22322279
3.   Fidler IJ.The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Reviews Cancer 2003, 3: 453.
doi: 10.1038/nrc1098 pmid: 12778135
4.   Wu XZ, Chen D, Xie GR. Extracellular matrix remodeling in hepatocellular carcinoma: effects of soil on seed? Med Hypotheses 2006, 66: 1115-1120.
doi: 10.1016/j.mehy.2005.12.043 pmid: 16504415
5.   Yeldag G, Rice A, Del Río Hernández, A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers 2018, 10: 471.
doi: 10.3390/cancers10120471
6.   Tu T, Budzinska MA, Maczurek AE, et al. Novel aspects of the liver microenvironment in hepatocellular carcinoma pathogenesis and development. Internat J Molecular Sciences 2014, 15: 9422-9458.
doi: 10.3390/ijms15069422 pmid: 4100103
7.   Saxena S, Jain A, Rani V.MicroRNAs mediated MMP regulation: current diagnostic and therapeutic strategies for metabolic syndrome. Current Gene Therapy 2017, 17: 214-227.
doi: 10.2174/1566523217666170707100026 pmid: 28685672
8.   Norio K, Kenichiro, et al. Cancer-associated fibroblasts in hepatocellular carcinoma. World J gastroenterology 2016, 22: 6841.
doi: 10.3748/wjg.v22.i30.6841 pmid: 4974583
9.   Liu F, Zhang W, Yang F, et al. Interleukin-6-stimulated progranulin expression contributes to the malignancy of hepatocellular carcinoma cells by activating mTOR signaling. Sci Rep 2016, 6: 21260.
doi: 10.1038/srep21260 pmid: 4754634
10.   Grivennikov SI, Greten FR, Karin M.Immunity, inflammation, and cancer. Cell 2010, 140: 883-899.
doi: 10.1016/j.cell.2010.01.025
11.   Calon A, Lonardo E, Berenguerllergo A, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genetics 2015, 47: 320-9.
doi: 10.1038/ng.3225 pmid: 25706628
12.   Kang N, Shah VH, Urrutia R.Membrane-to-nucleus signals and epigenetic mechanisms for myofibroblastic activation and desmoplastic stroma: potential therapeutic targets for liver metastasis? Molecular Cancer Res 2015, 13: 604-612.
doi: 10.1158/1541-7786.MCR-14-0542 pmid: 25548101
13.   Liu C, Liu L, Chen X, et al. LSD1 stimulates cancer-associated fibroblasts to drive Notch3-dependent self-renewal of liver cancer stem-like cells. Cancer Res 2017, 78: 938-949.
doi: 10.1158/0008-5472.CAN-17-1236 pmid: 29259010
14.   Quail DF, Joyce JA.Microenvironmental regulation of tumor progression and metastasis. Nature Med 2013, 19: 1423-1437.
doi: 10.1038/nm.3394 pmid: 24202395
15.   Degroote H,Van DA, Geerts A,,et al. Preclinical. Preclinical and clinical therapeutic strategies affecting tumor-associated macrophages in hepatocellular carcinoma. J Immunol Res 2018. Published online: .
16.   Yeung OW, Lo CM, Ling CC, et al. Alternatively activated (M2) macrophages promote tumor growth and invasiveness in hepatocellular carcinoma. J Hepatology 2015, 62: 607-616.
doi: 10.1016/j.jhep.2014.10.029 pmid: 25450711
17.   Wu Y, Kuang DM, Pan WD, et al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 2013, 57: 1107-1116.
doi: 10.1002/hep.26192 pmid: 23225218
18.   Belair DG, Miller MJ, Wang S, et al. Differential regulation of angiogenesis using degradable VEGF-binding microspheres. Biomaterials 2016, 93: 27-37.
doi: 10.1016/j.biomaterials.2016.03.021 pmid: 27061268
19.   Ringelhan M, Pfister D, O’Connor T, et al. The immunology of hepatocellular carcinoma. Nature Immunol 2018, 19: 222-232.
doi: 10.1038/s41590-018-0044-z
20.   Zhang Q, Lou Y, Bai XL, et al. Immunometabolism: a novel perspective of liver cancer microenvironment and its influence on tumor progression. World J Gastroenterology 2018, 24: 3500-3512.
doi: 10.3748/wjg.v24.i31.3500
21.   Hida K, Maishi N, Torii C, et al. Tumor angiogenesis-characteristics of tumor endothelial cells. Internat J Clin Oncol 2016, 21: 206-212.
doi: 10.1007/s10147-016-0957-1 pmid: 26879652
22.   Jian K, Lingqun K, Jinge K, et al. After insufficient radiofrequency ablation, tumor-associated endothelial cells exhibit enhanced angiogenesis and promote invasiveness of residual hepatocellular carcinoma. J Transl Med 2012, 10: 230-230.
doi: 10.1186/1479-5876-10-230 pmid: 23171368
23.   Chouaib S, Kieda C, Benlalam H, et al. Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Critical Rev Immun 2010, 30: 529.
doi: 10.1615/CritRevImmunol.v30.i6.30 pmid: 21175416
24.   Vaupel P.Tumor microenvironmental physiology and its implications for radiation oncology. Seminars Radiation Oncol 2004, 14: 198-206.
doi: 10.1016/j.semradonc.2004.04.008 pmid: 15254862
25.   Jain RK.Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014, 26: 605-622.
doi: 10.1016/j.ccell.2014.10.006 pmid: 4269830
26.   Jain RK, Martin JD, Triantafyllos S.The role of mechanical forces in tumor growth and therapy. Annual Rev Biomedical Engineering 2014, 16: 321-346.
doi: 10.1146/annurev-bioeng-071813-105259 pmid: 4109025
27.   Ivanova L, Zandberga E, Sili?a K, et al. Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemotherapy Pharmacol 2015, 75: 235-46.
doi: 10.1007/s00280-014-2635-1 pmid: 25422154
28.   Fukumura D, Jain RK.Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007, 74: 72-84.
doi: 10.1016/j.mvr.2007.05.003 pmid: 2100036
29.   Jin C, Yuan FL, Gu YL, et al. Over-expression of ASIC1a promotes proliferation via activation of the β-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget 2017, 8: 25977-25988.
doi: 10.18632/oncotarget.10774 pmid: 27462920
30.   Basson MD, Zeng B, Downey C, et al. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC‐β. Molec Oncol 2015, 9: 513-526.
doi: 10.1016/j.molonc.2014.10.008 pmid: 4487881
31.   Ke Y, Xin W, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Labs invest 2015, 96: 116-136.
doi: 10.1038/labinvest.2015.144 pmid: 26618721
32.   Pandit H, Li Y, Li X, et al. Enrichment of cancer stem cells via β-catenin contributing to the tumorigenesis of hepatocellular carcinoma. BMC Cancer 2018,18: 783.
doi: 10.1186/s12885-018-4683-0
33.   Zhou L, Wang DS, Li QJ, et al. The down-regulation of notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro. Digestive Diseases & Sciences 2013, 58: 1016-1025.
doi: 10.1007/s10620-012-2434-7 pmid: 23053901
34.   Xiong S, Wang R, Chen Q, et al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. American J Cancer Res 2018, 8: 302.
pmid: 29511600
35.   Carbajopescador S, Ordo?ez R, Benet M, et al. Inhibition of VEGF expression through blockade of Hif1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. British J Cancer 2013, 109: 83-91.
doi: 10.1038/bjc.2013.285 pmid: 23756865
36.   Ghosh A, Dasgupta D, Ghosh A, et al. MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death & Disease 2017, 8: e2706.
doi: 10.1038/cddis.2017.123 pmid: 28358369
37.   Ha J, Guan KL, Kim J.AMPK and autophagy in glucose/glycogen metabolism. Molec Aspects Med 2015, 46: 46-62.
doi: 10.1016/j.mam.2015.08.002 pmid: 26297963
38.   Zhao X, Fu J, Xu A, et al. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death & Disease 2015, 6: e1751.
doi: 10.1038/cddis.2015.120 pmid: 25950481
39.   Liu H, Kiseleva AA, Golemis EA.Ciliary signalling in cancer. Nature Reviews Cancer 2018, 18: 511-524.
doi: 10.1038/s41568-018-0023-6
40.   Barker HE, Paget JT, Khan AA, et al. The tumor microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Rev Cancer 2015, 15: 409-425.
doi: 10.1038/nrc3958 pmid: 4896389
41.   Chen ML, Yan BS, Lu WC, et al. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Internat J Cancer 2013, 134: 319-331.
doi: 10.1002/ijc.28362 pmid: 23818246
42.   Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumor promoter in inflammation-associated cancer. Nature 2004, 431: 461-466.
doi: 10.1038/nature02924 pmid: 15329734
43.   Li S, Zhang Y, Wang J, et al. Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nature Biomed Engineering, 2017: 667-679.
doi: 10.1038/s41551-017-0115-8
44.   Dituri F, Mazzocca A, Fernando J, et al. Correction: differential inhibition of the TGF-β signaling pathway in HCC Cells using the small molecule inhibitor LY2157299 and the D10 monoclonal antibody against TGF-β receptor type II. Plos One 2016, 8: e67109.
45.   Liu L, Zhang GB, Lou ZH, et al. Discussion on the relationship between tumor-associated fibroblasts and scorpion venom based on tumor microenvironment theory. Shizhen Guoyi Guoyao 2018,29(05): 1163-1165.
46.   Chen MX, Zhang H.Cancer-specialist disease doctors confirmed the series of books. Changsha: Hunan Science Techn Press 2011: 441-468.
47   47.Liu J, Sun ZT, Liu W, et al. Analysis of the effect of Yiqi Huoxue Jiedu method on the microenvironment of lung cancer[J].Shanzhong Chin Med 2018,39: 1285-1287.
48.   Hua HQ.Modern research on the treatment of malignant tumors with Fuzheng PeiBen medicine. Chin J Tradit Chin Med 2008, 33: 1094-1097.
49.   Hu C, Cao W, Xu LP, et al. Study on the anti-hepatocarcinoma effect of heat-clearing and detoxifying traditional Chinese medicine monomer in vitro.Guangxi Med J 2016, 38: 85-88.
50.   Yang Z. Liu Shangyi clinically used traditional Chinese medicine Baiwei selection. Beijing Science Press 2016: 155-156.
51.   Wu J, Tang Q, Yang L, et al. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to β-elemene-inhibited growth of nasopharyngeal carcinoma cellS. Sci Rep 2017, 7: 509.
doi: 10.1038/s41598-017-00626-6 pmid: 28360411
52.   Qian X, Xu YZ, Deng DH, et al. Research progress of natural drugs on neovascular microenvironment of gastric cancer. Chin J Tradit Chi Med 2017, 35: 2302-2308.
53.   Huang H, Du T, Xu G, et al. Matrine suppresses invasion of castration-resistant prostate cancer cells by downregulating MMP-2/9 via NF-κB signaling pathway. Internat J Oncol 2016, 50: 640.
doi: 10.3892/ijo.2016.3805 pmid: 28000853
54.   Liu TS, Zhai K, Tan XN, et al. Effects of Tanghua Peony compound on the levels of TGF-β_1, IL-4 and IL-10 in serum of lung cancer rats. Hunan J Tradit Chin Med 2017,33: 129-131.
55.   Si HL, Wang LF, Xu ZW, et al. Effects of Feiyanning granule on tumor-associated macrophages and tumor metastasis in Lewis lung cancer mice. J Shanghai Univ Tradit Chin Med 2016, 30: 47-52.
56.   Ding SH, Yu FM.Analysis of the treatment of cancer pain with Shaoyao Gancao decoction. Yunnan J Tradit Chin Med 2016, 37: 53-54.
57.   Gatenby RA.A change of strategy in the war on cancer. Nature 2009, 459: 508-509.
doi: 10.1038/459508a pmid: 19478766
[1] Shan-Qi Guo, Xiao-Jiao Gao, Xiao-Jiang Li, Ying-Jie Jia. Traditional Chinese Medicine for Treatment of Apatinib-induced Hand and Foot Skin Reaction:A case report[J]. 93TMR Cancer, 2019, 2(2): 189-192.
[2] Meng-Meng Wang, Jing Xu, Xiao-Xiao He, Meng-Jun Qiu, Zhi-Fan Xiong, Sheng-Li Yang. Effect of Xiaoaiping on the expression of circadian clock genes in human hepatoma HepG2 cells[J]. 93TMR Cancer, 2018, 1(4): 111-117.
[3] Bin-Bin Zhang, Liang-Wu Zhuang, Jie Chen. Progress in the treatment of ovarian cancer with traditional Chinese medicine and western medicine[J]. 93TMR Cancer, 2018, 1(4): 124-128.
[4] Yu-Yu Feng. Significance, feasibility, and perspectives of network pharmacology in treating cancer[J]. 93TMR Cancer, 2018, 1(4): 105-110.
[5] Yang Sun, Yan-Xin Che, Bo-Yan Wu. Experimental study of Quercetin self-nanoemulsifying drug delivery system in inhibiting SMMC-7721 cells[J]. 93TMR Cancer, 2018, 1(4): 99-104.
[6] Cui-Ying Miao, Feng-Xi Long, Dong-Xin Tang, Qi-Liang Chen, Guang-Hui Ran. Study of the similarities and differences between TCM and Tujia medicine in clinical diagnosis and treatment of liver cancer[J]. 93TMR Cancer, 2018, 1(3): 87-93.
[7] Ning Mao, Yin-Hai Dai, Mao Wang, Wen-Xin Ji, Hai-Long Ma. A case report of breast Paget’s disease and related literature[J]. 93TMR Cancer, 2018, 1(3): 94-98.
[8] Chen Huang, Ya-Hui Liu, Li Ren. Research progress of interleukin-11 in tumor[J]. 93TMR Cancer, 2018, 1(1): 2-7.