Please wait a minute...
90Life Research  2019, Vol. 2 Issue (3): 99-105    DOI: 10.12032/life2019-0725-302
Tau pathology in Alzheimer’s disease and associated hypotheses
Shiruli Dash1,*()
1The International Medical School of Tianjin Medical University. Tianjin, China.
Download: HTML     PDF(1156KB)
Export: BibTeX | EndNote (RIS)      


This review aims to summarize how Tau pathology, in particular, brings about Alzheimer’s disease (AD). Various studies from the past decade have been analyzed with the purpose of providing a compact description on how Tau protein influences AD. The pathologies associated with the accumulation of Amyloid and Tau have always been at the forefront of all research on Alzheimer’s disease, which have usually centered around a deeper understanding of the pathophysiological mechanisms, or on developing therapeutics targeting these proteins. Recent data has also continuously been challenging the ubiquitous acceptance of amyloid being the driving force for Alzheimer’s disease as anti-amyloid therapies continue to fail. Tau protein shows an independent ability to accumulate within nerve cells, and its propagation shows a continuous seeding and spreading pattern. The purpose of this review is thus to enforce the importance of Tau pathology and tailor future developments in AD treatment accordingly. By the end of this review, we thus infer how regional accumulations of Tau affect AD, how and why the amyloid cascade hypothesis needs to change, and we end by looking at findings from the recent “Beyond Amyloid” symposium where factors like a loss in DNA integrity, cell cycle disorders and microtubular dysregulation have been proposed as potential mediators of AD.

Key wordsAlzheimer      AD      Tau protein      Amyloid     
Published: 25 July 2019
Corresponding Authors: Dash Shiruli   
Cite this article:

Shiruli Dash. Tau pathology in Alzheimer’s disease and associated hypotheses. 90Life Research, 2019, 2(3): 99-105.


URL:     OR

Fig. 1 Clinical features of Alzheimer’s disease.
Fig. 2 Characteristics of Tau.
Fig. 3 Summary of findings from the “Beyond Amyloid” symposium.
[1]   Alzheimer’s A.Alzheimer’s disease facts and figures.Alzheimers Dement .2016; 12:459-509.
[2]   Bateman RJ, Aisen PS, De Strooper B, et al.Autosomal-dominant Alzheimer’s disease: a review and proposal for the prevention of Alzheimer’s disease.Alzheimers Res Ther. 2010; 3:1.
doi: 10.1186/alzrt59
[3]   Serrano-Pozo A, Frosch MP, Masliah E, et al.Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med .2011; 1:a006189.
[4]   Hall B, Mak E, Cervenka S, et al.In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings.Ageing Res Rev .2017; 36:50-63.
doi: 10.1016/j.arr.2017.03.002
[5]   Y. Wang, E. Mandelkow.Tau in physiology and pathology.Nat Rev Neurosci. 2015; 17:22-35.
[6]   Yamada K.Extracellular Tau and Its Potential Role in the Propagation of Tau Pathology. Front Neurosci.2017; 11:667.
[7]   Mudher A, Colin M, Dujardin S, et al.What is the evidence that tau pathology spreads through prion-like propagation?Acta Neuropathol Commun. 2017; 5:99.
[8]   Stancu IC, Vasconcelos B, Ris L, et al.Templated misfolding of Tau by prion-like seeding along neuronal connections impairs neuronal network function and associated behavioral outcomes in Tau transgenic mice.Acta Neuropathol. 2015; 129:875-894.
[9]   Narasimhan S, Guo JL, Changolkar L, et al.Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain.J Neurosci.2017; 37:11406-11423.
doi: 10.1523/JNEUROSCI.1230-17.2017
[10]   Boluda S, Iba M, Zhang B, et al.Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol.2014; 129:221-237.
[11]   Simonsen AH, Herukka SK, Andreasen N, et al.Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement.2017; 13:274-284.
[12]   Saman S, Kim W, Raya M, et al.Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease.J Biol Chem. 2011; 287:3842-3849.
[13]   Skachokova Z, Martinisi A, Flach M, et al.Cerebrospinal fluid from Alzheimer’s disease patients promotes tau aggregation in transgenic mice.Acta Neuropathol Commun. 2019; 7:72.
[14]   Mattsson N, Scholl M, Strandberg O, et al.18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol Med .2017; 9:1212-1223.
[15]   Agadjanyan MG, Zagorski K, Petrushina I, et al.Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener2017; 12:33.
[16]   Maass A, Lockhart SN, Harrison TM, et al.Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.J Neurosci .2018; 38:530-543.
[17]   Buckley RF, Hanseeuw B, Schultz AP, et al.Region-Specific Association of Subjective Cognitive Decline With Tauopathy Independent of Global β-Amyloid Burden.JAMA Neurol. 2017; 74:1455-1463.
doi: 10.1001/jamaneurol.2017.2216
[18]   Herukka SK, Pennanen C, Soininen H, et al.CSF Abeta42, tau and phosphorylated tau correlate with medial temporal lobe atrophy.J Alzheimers Dis .2008; 14:51-57.
doi: 10.3233/JAD-2008-14105
[19]   Granadillo E, Paholpak P, Mendez MF, et al.Visual Ratings of Medial Temporal Lobe Atrophy Correlate with CSF Tau Indices in Clinical Variants of Early-Onset Alzheimer Disease. Dement Geriatr Cogn Disord.2017; 44:45-54.
[20]   Pettigrew C, Soldan A, Sloane K, et al.Progressive medial temporal lobe atrophy during preclinical Alzheimer’s disease.Neuroimage Clin. 2017; 16:439-446.
doi: 10.1016/j.nicl.2017.08.022
[21]   Hu X, Wang T, Jin F.Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition.Sci China Life Sci. 2016; 59:1006.
doi: 10.1007/s11427-016-5083-9
[22]   Pistollato F, Sumalla Cano S, Elio I, et al.Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev.2016; 74:624-634.
[23]   Shimizu Y.Gut microbiota in common elderly diseases affecting activities of daily living.World J Gastroenterol. 2018; 24:4750-4758.
doi: 10.3748/wjg.v24.i42.4750
[24]   Szablewski L.Human Gut Microbiota in Health and Alzheimer’s Disease. J Alzheimers Dis.2018; 62:549-560.
[25]   Di Meo F, Donato S, Di Pardo A, et al.New Therapeutic Drugs from Bioactive Natural Molecules: The Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.Curr Drug Metab. 2018; 19:478-489.
doi: 10.2174/1389200219666180404094147
[26]   Filosa S, Di Meo F, Crispi S.Polyphenols-gut microbiota interplay and brain neuromodulation.Neural Regen Res. 2018; 13:2055-2059.
doi: 10.4103/1673-5374.241429
[27]   Etxeberria U, Fernández-Quintela A, Milagro F, et al.Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition.J Agric Food Chem. 2013; 61:9517-9533.
doi: 10.1021/jf402506c
[28]   Liu X, Cao S, Zhang X.Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet.J Agric Food Chem. 2015; 63:7885-7895.
doi: 10.1021/acs.jafc.5b02404
[29]   Jiang C, Li G, Huang P, et al.The Gut Microbiota and Alzheimer’s Disease.J Alzheimers Dis. 2017; 58:1-15.
doi: 10.3233/JAD-161141
[30]   Herrup K.The case for rejecting the amyloid cascade hypothesis. Nat Neurosci.2015; 18:794-799.
[31]   McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy.Acta Neuropathol .2013; 126:479-497.
[32]   Ricciarelli R, Fedele E.The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind.Curr Neuropharmacol. 2017; 15:926-935.
[33]   Luo J, Warmlander SK, Graslund A, et al.Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis.J Biol Chem. 2016; 291:16485-16493.
doi: 10.1074/jbc.R116.714576
[34]   Karran E, Mercken M, De Strooper B.The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov.2011; 10:698-712.
[35]   Armstrong RA.A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathol.2014; 52:211-225.
[36]   Sato C, Barthelemy NR, Mawuenyega KG, et al.Tau Kinetics in Neurons and the Human Central Nervous System.Neuron. 2018; 97:1284-1298.
doi: 10.1016/j.neuron.2018.02.015
[37]   Castello MA, Soriano S.On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis.Ageing Res Rev. 2014; 13:10-12.
doi: 10.1016/j.arr.2013.10.001
[38]   Behl C, Ziegler C.Beyond Amyloid - Widening the View on Alzheimer’s Disease.J Neurochem. 2017; 143:394-395.
doi: 10.1111/jnc.2017.143.issue-4
[39]   Tse K H, Herrup K.Re-imagining Alzheimer’s disease - the diminishing importance of amyloid and a glimpse of what lies ahead.J. Neurochem .2017; 143:432-444.
doi: 10.1111/jnc.2017.143.issue-4
[40]   Arendt T, Stieler J, Ueberham U.Is sporadic Alzheimer’s disease a developmental disorder? J Neurochem .2017; 143:396-408.
[41]   Brandt R, Bakota L.Microtubule dynamics and the neurodegenerative triad of Alzheimer’s disease: The hidden connection. J Neurochem .2017; 143:409-417.
doi: 10.1111/jnc.2017.143.issue-4
[42]   Grimm A, Eckert A.Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem.2017; 143:418-431.
[43]   Walter J, Kemmerling N, Wunderlich P, et al.γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem.2017; 143:445-454.
[1] Qiuhua Li, Yuehai Ma, Ning Wang, et al.. Intervention and treatment of upper limb lymphedema with traditional Chinese medicine[J]. 90Life Research, 2019, 2(4): 160-164.
[2] Lei Yu, Linna Gao, Xue Bai, et al.. Age-related changes of senescence-accelerated mouse prone 10 (SAMP10) mice as an animal model for AD[J]. 90Life Research, 2019, 2(4): 124-136.
[3] Asoka Nimal Jinadasa. Empirical six-dimensional framework for slowing and reversing ageing using modern science and ancient wisdom[J]. 90Life Research, 2019, 2(3): 106-112.
[4] Xiaoyang Fang. Helping adolescents develop self-realization using art therapy[J]. 90Life Research, 2019, 2(2): 59-63.
[5] C.P. Ong. Taijiquan's Enigma[J]. 90Life Research, 2019, 2(1): 31-44.
[6] Shiruli Dash. The polygenic risk in schizophrenia: assessing GWASs and evaluating Clozapine, ECT and other treatment modalities[J]. 90Life Research, 2019, 2(1): 22-30.
[7] Gómez Jensen Alberto Alejandro, Martínez Diana Elina, Wan Qing Guo. Efficacy of Qigong for the treatment of alopecia universalis:a clinical case report[J]. 90Life Research, 2019, 2(1): 8-13.