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Highlights

Traditional Bigu-herbs regimen (BHR), a Taoism (Taoism is an ancient Chinese Taoist philosophy system)
special health-preserving technique to achieve longevity through strict abstinence from food) and modern
ketogenic diet can promote the formation of ketone bodies and achieve the state of nutritional ketosis by
limiting carbohydrate intake. This review summarizes how ketone bodies or nutritional ketosis affects
diseases and the aging process, as well as the side effects of ketogenic diet.

Traditionality

BHR refers to taking herbs with the purpose of reducing appetite and controlling diet and then replacing
normal diet. The earliest record of Bigu comes from Zhuangzi·Xiaoyaoyou (Chuang-tzu·Wandering
Beyond), which was written by Chuang-tzu, a major representative of the Taoist School (369–286 B.C.E.).
In the Eastern Han dynasty (25–220 C.E.), the ancient classical medicine monograph, Shennong Bencao
Jing (The Classic of Herbal Medicine), initiated the practice of BHR for health, which recorded several
herbs with weight-loss and life-prolonging properties. Nowadays, there are several preclinical studies and
clinical trials of BHR in China, and the results show that BHR has a beneficial clinical effect in the
prevention and treatment of metabolic syndrome, autoimmune-related diseases, etc.
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Abstract
The Bigu-herbs regimen, a Taoism (Taoism is an ancient Chinese Taoist philosophy system) special
health-preserving technique to achieve longevity through strict abstinence from food, limits the intake of grains and
uses herbs to replace normal diet to gain energy. Practicing Bigu-herbs regimen for several weeks to several years
can make one lose weight, prevent diseases, and prolong life. The modern ketogenic diet (KD) mainly limits
carbohydrate intake and increase fat intake. The low-carbohydrate, high-fat, and adequate protein diet is well
known for its antiepileptic and neurotrophic effects. Limiting the intake of carbohydrate results in energy
metabolism reprogramming to mobilize the steatolysis, energize and promote ketone bodies (KBs) production,
achieving a state of nutritional ketosis (NK). The researchers summarized how ketone bodies or NK affects
diseases and the aging process, as well as the side effects of KD. NK has a favorable effect on caloric intake, lipid
parameters, glycemic index, and insulin sensitivity; moreover, it can be used as a treatment option for diabetes,
obesity, and other metabolic disorders. NK is recognized as being neuroprotective and is good for epilepsy,
Alzheimer’s disease, and emotional disturbance. Targeting the metabolic differences between tumor and normal
cells, NK limits the use of glucose and impairs energy metabolism in cancer cells, inhibiting their growth and
rendering them susceptible to clinical treatments. NK also affects inflammation and the release of cytokines,
regulate gut flora, extend longevity and health span, and preserve physiologic functions. The side effects of KDs
are controllable under the guidance of a specially trained dietitian and medical team.
Keywords: Grain avoidance, Bigu-herbs regimen, Ketogenic diet, Nutritional ketosis, Ketone body
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Background

Good health has always been the aspiration of human
beings, and keeping one’s self fit by adjusting the diet
has a long history. Bigu is regarded as a Taoist (Taoism
is a Chinese traditional philosophical system
developed by of Lao-tzu and Chuang-tzu) special
health-preserving technique developed in the context
of ancient Chinese Taoist philosophy to achieve
longevity through strict abstinence from food, which
literally means “grain avoidance”, making it similar to
fasting [1–4]. Bigu-herbs regimen (BHR) refers to
taking herbs with the purpose of reducing appetite and
controlling diet and then replacing normal diet [5]. The
earliest record of Bigu comes from
Zhungzi·Xiaoyaoyou (Chuang-tzu·Wandering Beyond),
which was written by Chuang-tzu, a major
representative of the Taoist School (369–286 B.C.E.)
[3]. In the Eastern Han dynasty (25–220 C.E.), the
ancient classical medicine monograph, Shennong
Bencao Jing (The Classic of Herbal Medicine),
initiated the practice of BHR for health, which
recorded several herbs with weight-loss and
life-prolonging properties [6]. Later, Qianjin Yifang
(Supplemental Prescriptions Worth a Thousand in
Gold) and Bencao Gangmu (Compendium of Materia
Medica) recorded formulae and a large number of
prescriptions of BHR [5, 7]. The time of BHR ranges
from several weeks to several years. In adapting BHR,
an individual reduces the intake of cereals and meat,
cuts off food supplementation to less than the
minimum required to maintain normal activities, lives
on herbs for nourishment and energy, and keeps body
in a state of approaching fasting [8–10]. It can enhance
immunity, promote weight-loss, benefit nerve activity,
prolong life, and comprehensively improve health [5,
6]. Nowadays, there are several preclinical studies and
clinical trials of BHR in China, and the results show
that BHR has a beneficial clinical effect in the
prevention and treatment of metabolic syndrome,
autoimmune-related diseases, etc [11–16].
Fasting has a role in adaptive cellular responses that

reduce oxidative damage and inflammation, optimize
energy metabolism, and strengthen cellular protection.
It has the potential to delay aging and help improve
disease conditions while minimizing the side effects
caused by chronic dietary interventions [17]. Modern
medicine has found that physiologic responses to
fasting include increased insulin sensitivity and
cellular stress resistance, reduced resting blood
pressure and heart rate, and increased parasympathetic
tone [17]. Fasting also leads to a rise in concentration
of ketone bodies (KBs), which are metabolites of fat,
with a role in providing energy and sending signals
[18–20]. There is a metabolic reprogramming in the
body when a person undergoes fasting. The body uses
the energy supplied by KBs instead of the energy

supplied by glucose [21, 22]. This dietary
accumulation of KBs in the blood is known as
nutritional ketosis (NK) [23, 24].
In order to keep the body in a state of approaching

fasting and ensure necessary nutrition, there is a
modern ketogenic diet (KD) reported in Michigan [25,
26]. It is a low-carbohydrate diet that can significantly
alter the energy matrix of the body, especially in the
brain. KD is known to have an effective anticonvulsant
effect [27]. Preliminary evidence has been obtained for
its anti-tumor effects and positive influence in
regulating immunity, metabolism, nervous system
functions, etc [28]. Considering that it is a high-fat diet
and the total calories can ensure the basic life
requirements, clinical application is being constantly
explored [29]. With the people’s increasing awareness
of health and wellness, KD begins to popularize among
the people and received good feedback [30, 31].
Traditional BHR and modern KD may reach a

long-term stable NK by limiting carbohydrate intake
and adjusting food structure [12, 32]. Here, the
researchers reviewed studies in animals and humans
that have shown how NK affects metabolism, nervous
system functions, tumors, immune system health,
lifespan, chronic disease management outcomes, and
the aging processes.

Bigu-herbs regimen

BHR is a kind of Taoist regimen similar to fasting.
Bigu herbs refer to several plant-based foods or recipes
with the homology of medicine, which can prevent
diseases and promote health, especially when appetite
is reduced and fasting is easier. By taking herbs instead
of normal food, BHR reduces or even avoids the intake
of carbohydrates and proteins, ranging from several
weeks to several years, to keep achieving NK in the
body and eventually regulate metabolism, boost
immunity, aid nervous system functions, prolong life,
promote weight loss, and improve chronic disease
management [5, 10, 33, 34].
BHR has a good reputation for thousands of years in

China, and its safety and feasibility has been verified,
which is beneficial to the problems of hunger because
of its compliance and safety in simple fasting therapy
[5, 10]. The earliest extant work of Bigu is a silk scroll
unearthed from the Mawangdui archaeological site
(Han dynasty, 202 B.C.E.–220 C.E.) called Quegu
Shiqi (Grain Avoidance and Eating Qi) in Changsha,
China. The silk manuscripts were written around the
periods of Gao and Hui emperors (206–188 B.C.E.) [3].
The famous historiographer Si Maqian (91 B.C.E.)
recorded Bigu as a treatment for disease in Shiji
(Records of the Grand Historian), which is China’s
first general chronicle [5, 35].
In the Eastern Han dynasty (25–220 C.E.),

Shennong Bencao Jing (The Classic of Herbal
Medicine) officially recorded the BHR and the 18



REVIEW

TMR | September 2020 | vol. 5 | no. 5 | 325Submit a manuscript: https://www.tmrjournals.com/tmr

doi: 10.12032/TMR20200324169

herbs that were used [10]. Sun Simiao (541–682 C.E.),
a famous physician in the Tang dynasty (618–907
C.E.), emphasized the medical effects about BHR in
his medical book Qianjin Yifang (Supplemental
Prescriptions Worth a Thousand in Gold) [7].
Subsequently, the medical book Bencao Gangmu
(Compendium of Materia Medica) that was written by
Li Shizhen (1518–1593 C.E.), a famous physician and
pharmacologist in the Ming Dynasty (1368–1644 C.E.),
and other books recorded numerous transcriptions of
BHR [10, 34]. The main herbs were Baizhu
(Atractylodis Macrocephalae Rhizoma), Huangqi
(Astragali Radix), Huangjing (Rhizoma Polygonati),
Fupenzi (Rubi Fructus), Dazao (Jujubae Fructus),
Yiyiren (Coicis Semen), Gancao (Glycyrrhizae Radix
et Rhizoma), Renshen (Ginseng Radix et Rhizoma),
Cangzhu (Atractylodis Rhizoma), Shihu (Dendrobii
Caulis), Yuanzhi (Polygalae radix), Niuxi
(Achyranthis bidentatae Radix), and Wuweizi
(Schisandrae Chinensis Fructus) [5, 7, 36]. These
herbs were described as rich in lipids and protein,
sufficient the basic needs of the body, time-taking to
digest and metabolize, and energy-boosting [5, 33]. On
the basis of replenishing energy and improving health,
adding herbs may help remove impurities and prolong
life (such as Shiwei (Folium Pyrrosiae)) [5]. At present,
a number of individuals in China and other parts of the
world continue to practice BHR for weight loss, health,
and longevity. Clinical trials are also gradually
confirming the role of this ancient traditional regimen
[3, 5, 37].

KD and fasting

What is KD? It is a high-fat, low-carbohydrate, and
adequate protein diet which limits glucose availability
and causes a metabolic reprogramming of the body’s
energy source because KBs replace glucose for energy
[38]. KD originated in the treatment of epilepsy by
fasting. In 1921, children with intractable epilepsy
fasted for 3 weeks under the guidance of a Michigan
pediatrician named Dr. Hugh Conklin and a certain
faith healer [25].
Fasting can be divided into three types: caloric

restriction, dietary restriction, and intermittent fasting
(IF) [39]. IF is currently having more research and
gradually gaining popularity among folks, and its
methods include: (1) limiting time consumption, which
means limiting your intake to 6–8 hours [40]; (2) “5: 2
IF” which means eating only a moderate amount of
food 2 out of 7 days a week [17]; (3) alternate-day
fasting, which is fasting and eating over a 24h period,
respectively. The point is not to obsessively limit total
calorie intake but to alter the frequency of food
consumption [41]. IF elicits evolutionarily conserved,
adaptive cellular responses that improves glucose
regulation, suppresses inflammation, and increases

stress resistance. During fasting, cells activate
pathways that enhance intrinsic defenses and remove
or repair damaged molecules. After resumption of
feeding, cells engage in tissue-specific processes of
growth and plasticity [42].
The KD mimics a metabolic state of fasting,

inducing a metabolic reprogramming toward
mobilizing the steatolysis to energize the body. One of
the common metabolic changes assumed to take place
when a person follows fasting is ketosis [43]. To
imitate this state of ketosis caused by fasting, Dr.
Wilder first described this high-fat and
low-carbohydrate diet in the same year [26]. It is
essentially the same KD that is in use now [27]. The
carbohydrate restriction of the KD keeps glucose and
insulin levels low and stable, activating
gluconeogenesis and forcing fatty-acid conversion to
ketogenesis.
As the KD approaches 100 years of continuous use,

it is becoming ever more mature, and the effect is
gradually demonstrated. There are four types of KDs
[45], namely classic ketogenic diet, modified Atkins
diet (MAD), medium-chain triglyceride diet, and low
glycemic index treatment. The researchers also
compared the KDs to the standardized American diet
and Chinese residents’ diet (Table 1). In general, The
KDs provides nutrition with 1g/kg protein and net
carbohydrates (excluding dietary fiber and other
non-absorbable substances) ≤ 50 g or < 5% of energy
intake per day, with the remainder of calories as fat [44,
45]. The ratio of fat to carbohydrate and protein ranges
from 2:1 to 4:1, with higher ratios seen as probably
more effective [46]. The MAD is 70% fat and 5%
carbohydrate and could achieve NK if carbohydrates
are reduced sufficiently. In this case, MAD will have
better compliance for similar benefits in disease
control with a less restrictive diet [47, 48]. Comparing
the efficiency of different fats in inducing ketosis, an
animal study demonstrated the rank order of induced
NK was medium-chain triglycerides > flaxseed oil

CKD, classic ketogenic diet; MAD, modified Atkins
diet; MCTD, medium-chain triglyceride diet; LGIT,
low glycemic index treatment; SAD, standardized
American diet; CRD, Chinese residents’ diet.

Table 1 Energy supply ratio of three major
nutrients in ketogenic diet

Carbohydrate
(calories %)

Fat
(calories %)

Protein
(calories %)

CKD 3 90 7
MAD 5 70 25
MCTD 20 70 10

LGIT 27 45 28

SAD 50 35 15

CRD [49] 55–65 20–30 10–15
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≥ lard = butter [50]. With the increase of the people’s
health awareness and attention to NK, the number of
clinical research increases around the 21st century [27].
Some KD preparations have also been put into
research and application [51]. It is possible to elevate
blood ketones artificially with KB supplementation or
ketogenic agents, which could cause a more sustained
production of KBs [52]. Animal researches suggest
that an exogenous ketone-supplemented KD makes it
easier to maintain NK and offer a more efficacious
therapy than KD alone [53].
KDs provide the KBs that are necessary to fuel cells,

cause energy metabolic reprogramming, reach a state
of NK, and elicit highly orchestrated systemic
responses to bolster mental and physical performance,
as well as disease resistance.

Metabolic reprogramming and nutritional
ketosis

Glucose and fats are the body’s major sources of
energy. After meals, glucose is used for energy, and fat
is kept in adipose tissue as triglycerides (TGs). The
inadequate availability of carbohydrates in BHR or KD,
mimicking that of fasting, triggers metabolic
reprogramming, an ancient adaptation to times of food
scarcity. Cells deplete the faster sugar-based energy
reserves and begin to convert fat into energy in a
slower metabolic process. In humans, fasting for 12–24
h generally results in glucose depletion and liver
glycogen loss of ≥ 20% and triggers a series of
negative feedback regulatory mechanisms, including
increased glucagon secretion, increased production of
endogenous glucose, improved insulin sensitivity, and
maintained increase in allogeneic glucose levels [17,
54]. In this metabolic condition, the body burns fats
rather than carbohydrates to provide energy. TGs in
adipose tissue are hydrolyzed into fatty acids that are
released into hepatic cells through the bloodstream to
produce KBs, providing a major source of energy for
the body and brain, which is delivered by crossing the
blood-brain barrier. KBs also diminish glutamine
uptake, decrease the level of c-Myc, a metabolic
master regulator, and recruit glycolytic gene promoters
[55–58].
There are three KBs known, namely (1) acetoacetate,

the central KB in energy metabolism; (2)
β-hydroxybutyrate (β-HB), the primary circulating KB;
(3) acetone [18, 59]. Low-carbohydrate intake also
results in a reduction of the circulating insulin level,
which promotes a high level of circulating fatty acids
[19]. Human nutrition begins with KB. Colostrum is
ketogenic and serves the needs of the neonate
completely [60]. The muscles, especially the heart, can
easily utilize KBs while the brain utilizes KBs only in
long-term NK. However, erythrocytes and the liver do
not utilize ketones [61].
The concentration of postprandial blood KB is

0.1–0.2 mM and varies depending on carbohydrates
availability [18]. A blood KB concentration of > 0.5
mM is a commonly used threshold qualifying a state of
NK [62]. It is quite safe, as the concentration of KB is
far lower than the concentration seen in diabetic
ketoacidosis [21, 63]. The energy metabolic
reprograms from using glucose as a fuel source to
using fatty acids and KB results in greater metabolic
flexibility and efficiency of energy production. 100 g
of acetoacetate generate 9.4 kg ATP, and 100 g of
β-HB yield 10.5 kg ATP, while 100g of glucose
produce only 8.7 kg ATP [60, 64].
In NK formed by metabolic reprogramming, KBs

exert large effects by modulating carbohydrate and fat
metabolism [23]. KBs are not only fuel but also potent
signaling molecules with major effects on cell and
organ functions. KBs regulate the expression and
activity of many proteins and molecules associated
with health and aging [65]. They also activate
pathways that enhance intrinsic defenses against
oxidative and metabolic stress, and remove or repair
damaged molecules [42]. These include fibroblast
growth factor 21 [66, 67], ADP ribosyl cyclase [68],
nicotinamide adenine dinucleotide (NAD+), etc [69].
KBs have a profound effect on systemic metabolism
by influencing the major cellular pathways that bolster
mitochondrial function, antioxidant defenses, and
stress resistance while upregulating autophagy.
Moreover, KBs stimulate the expression of the gene
for brain-derived neurotrophic factor, with implications
for brain health; psychiatric and neurodegenerative
disorders; and emotional disturbance [42]. Preclinical
studies show consistent the disease-modifying efficacy
of NK on a wide range of chronic disorders, including
diabetes, obesity, neurodegenerative brain diseases,
inflammatory diseases, and cancers [29].

NK and metabolism

The favorable effects of NK on caloric intake, lipid
parameters, glycemic indices, and insulin sensitivity
render it a therapeutic option in a variety of conditions,
such as diabetes, obesity, and other metabolic disorders.
The metabolic actions of KBs can alter fuel selection
through attenuating glucose utilization in peripheral
tissues, anti-lipolytic effects on adipose tissue, and
attenuation of proteolysis in skeletal muscles [70].
Diabetes is a complicated metabolic syndrome [71].

NK is significantly beneficial in lowering oral glucose
tolerance test, controlling hyperglycemia, reversing
insulin resistance, improving glycemic control
(glycated hemoglobin), eliminating/reducing diabetic
medications, increasing high-density lipoprotein
cholesterol (HDL-C), reducing hunger, and causing
weight loss in overweight and obese individuals with
type 2 diabetes [72, 73]. Moreover, limiting both
proteins and carbohydrates can reverse diabetic
nephropathy [74]. Among patients with diabetes
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treated with insulin and insulin secretagogues, KD may
increase the risk of hypoglycemia, which can be solved
by modifying the drug dosage [73]. Furthermore, KBs
are being proposed as super-metabolic fuel, and KD is
currently regarded as an apt dietary therapy for
diabetes [75].
Sodium-glucose co-transporter-2 inhibitor (SGLT2i)

is a novel diabetes drug that inhibits the kidney
transporter, which reabsorbs 90% glucose [76]. This
reduces the reabsorption of glucose and promotes
glycosuria. SGLT2i has a good insulin-independent
hypoglycemic effect and leads to significant caloric
deficiency and weight loss [77], mimicking
fasting-induced metabolic reprogramming of fuel
energetics and amelioration of insulin resistance with
KB utilization. KBs are commonly observed in
patients treated with SGLT2i [78].
In addition to the hypoglycemic effect, SGLT2i has

also been proven to have a protection effect on the
cardiovascular and renal systems. SGLT2i is even
better for heart failure than antihypertensive drugs [79].
The main mechanism of cardiac protection is to
improve cardiomyocyte metabolism, improve
ventricular load, and reduce cardiomyocyte necrosis
and myocardial fibrosis [80]. KBs compete with free
fatty acids and glucose for metabolic oxidation in
cardiac mitochondria [81, 82]. KBs have multiple
heart-protective effects: (1) it maintains mitochondrial
integrity by producing less reactive oxygen species,
which is the best substrate for all tissues, including the
heart [83, 84]; (2) it stabilizes cell membrane potential
and provides an antiarrhythmic effect; (3) it blocks the
hypertrophic transcription pathway by inhibiting
histone deacetylase [85, 86]. Obesity and insulin
resistance are risk factors for cardiovascular events
[87]. The main mechanism for weight loss is increased
fat oxidation as well [88]. SGLT2i can provide kidney
protection for diabetic patients with or without
diabetes-related kidney disease [89]. It is also
presumed to be due to the metabolic reprogramming to
replace glucose and fatty acids with KBs as the
preferred energy source, providing more
energy-efficient oxygen consumption while improving
the oxygenation of kidney tissues [90, 91].
Obesity is a major clinical and public health

problem leading to diabetes, dyslipidemia, and
hypertension, as well as increased cardiovascular and
overall mortality. The KD has shown greater weight
loss as compared with other balanced diets. The
possible mechanisms involved are controlled hunger
due to the higher satiety effect and the direct
appetite-suppressing action of KBs, increased lipolysis,
increased metabolic costs of gluconeogenesis, and
improved regulation in the circulating the level of
ghrelin and leptin that control appetite [92, 93].
NK can improve cardiovascular risk parameters

through improvement in hepatic, intravascular, and
peripheral metabolism of lipoproteins and alterations

in fatty acid composition. NK may confer the unique
metabolic benefits, such as lowering blood pressure
and diminishing resistance to insulin without any
adverse impact on renal or liver functions [94].
Thus, NK is beneficial in alleviating metabolic

disorders (obesity, insulin resistance, hypertension, or a
combination of these disorders). Also, KD is not only
beneficial but also probably life-saving in diseases
involving glucose metabolism and transport, such as
glucose transporter protein deficiency and pyruvate
dehydrogenase deficiency [95, 96].

NK and nervous system

NK is recognized as being neuroprotective and good
for epilepsy, autism spectrum disorders (ASD),
Alzheimer’s disease (AD), and emotional disturbance.
KD originates from the fasting treatment of epilepsy,
which aims to provide energy for the brain. Brain KB
levels are positively correlated with blood KB levels
[97]. Although there is an increased availability of
anticonvulsants recently, it has become more
commonly used in academic centers throughout the
world even in the early course of epilepsy [27].
Regarding the need for growth and development, KD
can ensure that the basic nutritional intake is more
suitable for children than fasting. Success in seizure
control generally takes 1–2 years, which tends to relate
to the level of ketosis [27]. The effect of NK on
epileptics is not only in the typical age range (5–10
years) but also in other age groups, including adults
[98].
In NK, KBs can protect brain cells, reduce free

radical damage, and improve mitochondrial function. It
can inhibit nerve excitation, promote and optimize the
expression of neurotransmitters like brain-derived
neurotrophic growth factor, and regulate intracerebral
circulation [99]. The most plausible reason is because
of the increased formation of KBs by which NK
suppresses seizures [45]. β-HB is structurally similar to
gamma aminobutyric acid (GABA) and may also have
direct anticonvulsant or antiepileptogenic effects [30,
100].
NK affects various neurological conditions

characterized by glutamate receptor-mediated
excitotoxicity, including AD [101]. The brain in AD
shows glucose hypometabolism but may utilize KBs
for energy production without a decline in aging [102].
Evidence from a rat model suggests that NK can
attenuate seizure-induced neuronal injury via
autophagy [103]. NK can also improve
cognitive-behavioral outcomes, decrease β-amyloid
deposition, and prevent hyperphosphorylated tau
pathologies [104]. A meta-analysis indicated that NK
induced by medium-chain triglycerides may improve
cognition in patients with mild cognitive impairment
and AD [105].
The chronic activation of anabolic cellular pathways



REVIEW

TMR | September 2020 | vol. 5 | no. 5 | 328

doi: 10.12032/TMR20200324169

Submit a manuscript: https://www.tmrjournals.com/tmr

and metabolic conversion disorder resulting in a deficit
in GABAergic signaling and neuronal network hyper
excitability may contribute to alterations in gene
expression that result in ASD [106]. KD, through
inducing NK and improving metabolic health, may
ameliorate developmental neuronal network
abnormalities and consequent behavioral
manifestations in ASD [107].
Preclinical studies, case reports, and case series have

demonstrated the antidepressant and mood-stabilizing
effects of NK. The molecular basis may involve the
multiple physiological processes of mood disorders,
primarily including increased cAMP-response,
element-binding protein phosphorylation, neurotrophic
effects, endorphin release, glutamate/GABA
transmission, monoamine levels, insulin dysfunction,
and inflammation [22, 108].

NK and tumor

There is a growing awareness regarding the fact that
the metabolic phenotype of cells within tumors is
heterogeneous. In general, tumor cells lack genomic
and metabolic flexibility, and these cells depend on
anaerobic oxidation of glucose to a large extent. The
rates of metabolizing glucose and lactate are much
higher than their non-tumor equivalents [109, 110].
Tumors undergo a series of metabolic changes
characterized by the Warburg effect, including (1)
enhanced aerobic glycolysis; (2) increased glucose
uptake and consumption; (3) enhanced lipid and
protein synthesis; (4) increased glutamine uptake and
catabolism, which are conducive to tumor malignant
proliferation, invasion, metastasis, and adaptation to an
adverse living environment. Designed to lack key
mitochondrial enzymes, tumors are unable to use KBs
as energy sources [111, 112].
In contrast to tumor cells, normal cells also depend

on glucose metabolism, yet they have the flexibility to
use KBs during caloric restriction. Targeting the
metabolic differences between tumor and normal cells
is regarded as a novel anticancer strategy. During NK,
the body cells depend on lipid oxidation and
mitochondrial respiration. KBs, as the main source of
energy, limit the use of glucose and impair energy
metabolism in cancer cells, inhibiting their growth and
rendering them susceptible to clinical treatments.
Based on the fact that NK is good for tumors, a
nutritionally balanced KD can be used as supportive
treatment for the tumor [109, 113].

Preclinical evidence
The definite effect of protecting brain cells and
inhibiting nerve excitement triggered KD anti-tumor
researches on gliomas, and then the studies extended to
other brain tumors and other system origins.
Preclinical studies have shown that NK has profound
effects, such as preventing cancer initiation, inhibiting

tumor growth, enhancing the effects of radiation and
chemotherapy, and prolonging survival in lung [111],
gastric [114], colorectal cancers [115], to name a few.
A recent analysis including 29 animal and 24 human

studies demonstrated that the majority of animal
studies (72%) yielded evidence for the anti-tumor
effect of KD [116]. The high glycolytic rate resulted in
resistance to radiation therapy and cancer progression.
Performing KD on the transplanted tumor model of
lung cancer resulted in the enhanced efficacy of
radiotherapy by improving oxidative stress [111]. The
mechanisms observed in vivo are: (1) the improvement
of DNA repair in normal non-tumor cells; (2) the
inhibition of tumor cell repopulation through the
modulation of the PI3K/AKT/mTOR pathway causing
a downstream of insulin and insulin-like growth
factor-1; (3) the redistribution of normal cells into
more radio-resistant cell cycle phases; (4) the
normalization of the tumor vasculature; (5) the
increase in the intrinsic radio-resistance of normal cells
[113].
Shi Yujiang’s team found that hyperglycemia could

significantly inhibit the activity of the AMP-activated
kinase in vivo, destroy the formation of apparent
anticancer modification, and increase the risk of cancer.
A lower blood glucose level during NK could reduce
the risk of cancer [117]. NK might suppress the
progression of cancer and the accompanying systemic
inflammation without any adverse effects on weight
gain or muscle mass in colon tumor-bearing mice,
which might help to prevent cancer cachexia [118].
Inhibition of NAD+ metabolism can lead to DNA
damage and tumorigenesis, while restoring NAD+
concentrations can prevent DNA damage and
tumorigenesis [119]. A study of the rat model showed
that KD could significantly increase the proportion of
NAD+/NADH, suggesting that NK can improve
various brain dysfunctions, metabolic disorders, and
anti-tumor mechanisms by increasing NAD+ [120].
NK can also limit the activity of glutathione
peroxidase, to improve the efficiency of CD8+
tumor-infiltrating lymphocyte cytotoxicity in tumor
tissue through the recombination of intestinal flora and
immune metabolism [121]. Byrne et al. started KD on
mice after liver tumor initiation and found that while
NK had marked protective effects against liver
tumorigenesis, it could not stop the progression of
established liver tumors [122].
In another report, Feyter et al. found that rat gliomas

could oxidize KBs and upregulate KB transport when
fed with a KD. It contradicts the hypothesis that brain
tumors are metabolically inflexible [123]. They
carefully analyzed β-HB metabolism and found that
glioma tissue in vivo took up β-HB and metabolized it
to glutamate. Rat gliomas even could upregulate β-HB
transporters when they were grown in the NK
environment. That may be attributed to the fact that
KB metabolism differs between species, and in this
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case, between rat and man [31].

Clinical evidence
NK could potentially inhibit the growth of malignant
cells, including neuroblastoma, pancreas, prostate,
stomach, colon, brain, and lung cancers, and it may
even increase survival time [124]. Current clinical
researches on the effects of NK on tumors are mostly
limited to small pilot studies or case reports and mainly
focused on cancers with poor prognoses, with NK as
part of the auxiliary support therapy [125].
Nebeling et al. reported a decrease in glucose uptake

at the tumor site in patients with malignant
astrocytoma tumors, which led to significant clinical
improvements in the quality of life [126]. The first
prospective clinical trial on KD in recurrent malignant
glioma demonstrated that KD could be safely applied
to patients and might increase the efficacy of
anti-angiogenic therapies in a mouse xenograft model
[127]. Prospective studies of KD, combined with
radiotherapy and chemotherapy, suggest that it is
feasible and safe as a radiation sensitizer for glioma
during radiation and chemotherapy treatment [128], as
an adjuvant to standard chemoradiation treatment of
glioblastoma multiforme [129], and also as a
synergistic regimen to chemotherapy in stage IV rectal
cancer patients [130].
There are just two randomized controlled trials

(RCTs) that are conducted to determine the effects of
NK on cancer, and both are cancers closely related to
obesity [131]. One is an RCT (NCT03171506) of
ovarian or endometrial cancer, which showed that NK
could improve physical function, increase energy, and
diminish specific food cravings [131]. Another RCT
suggested that among patients with locally advanced
breast cancer receiving neoadjuvant chemotherapy, fat
mass and body weight decreased to a much greater
extent, and overall survival was longer in the KD
group after 30 months follow-up [132]. KD
prescription varied widely between studies and was
described only rudimentarily in most papers [125].
The influence of NK on overall survival is still

inconclusive until now. Patients with malignant tumors
are usually accompanied by malnutrition (40%–80%),
systemic inflammation, hypoimmunity, and other
concomitant symptoms. The unique energy supply
mode and anti-inflammatory effect of NK make KD or
BHR a supportive therapy for anti-tumor treatment.
The difficulty is that the routine administration of
hormones and intravenous infusion of glucose are
often needed for clinical treatment of tumors, which
will probably affect the maintenance of NK. A
retrospective study on glioblastoma multiforme
indicated that KD reduced serum glucose levels
significantly, even in conjunction with high-dose
steroids [133]. The researchers focused more on
patients incapable or unwilling to cook for themselves
or relying on formula foods due to swallowing

difficulties and were more committed to finding a
suitable diet as nutrition support [134]. Larger
prospective trials to confirm this relationship are
warranted.

NK and immune system

Immoderate diets can promote chronic inflammation
leading to numerous diseases, such as cancer; diabetes
mellitus; cardiovascular and chronic renal diseases;
and autoimmune and neurodegenerative disorders
[135]. High glucose intake can exacerbate
autoimmunity through growth factor-β cytokine
activation [136].
Preclinical data suggest that KDs affect

inflammation and, consequently, cytokine release. By
using a rat model in a study regarding fever, Dupuis et
al. found that the animals that achieved NK showed
less fever and low proinflammatory cytokine levels
[137]. NK exerts anti-inflammatory actions via the
promotion of microglial ramification [138], increasing
the relative abundance of putatively beneficial gut
microbiota while reducing putatively proinflammatory
taxa [139].
Recently, it has been found that NK protects mice

from lethal influenza A virus infection as a result of an
expansion of γδ T cells in the lungs, which improve
barrier functions, thereby enhancing antiviral
resistance [140, 141]. A retrospective case-control
study reported that in a group of 125 consecutive
adults with epilepsy, baseline immunosuppression did
not worsen with KD [142]. Furthermore, a domestic
clinical study found that flexible BHR-induced NK
could increase the probiotic proportion in intestinal
flora of chronic urticaria patients and, as a result,
improve the symptoms of chronic urticaria, especially
in chronic idiopathic urticaria [14]. Goldberg et al.
identified that NK could block interleukin-1β in
neutrophils and alleviate urate crystal-induced gout
without impairing immune defense against bacterial
infection in mice and humans [143]. Multiple sclerosis
(MS) is a common inflammatory disease. Preclinical
data suggest that KD may modulate immunity in the
mouse model of MS [144]. A single-arm prospective
study enrolling 20 subjects with relapsing MS
indicated that KD reduced the serologic levels of
proinflammatory adipokines and alleviated fatigue
[145]. However, the first RCT investigating the effects
of KD on disease progression of MS (n = 111) is still
enrolling [146].

NK and lifespan

Aging may be a predominant risk factor for major
diseases. Moreover, dietary interventions are simple,
non-invasive methods that can be utilized to improve
health and lifespan. Preclinical evidence demonstrates
that KDs can extend longevity, improve health, and
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Figure 1 Bigu-herbs regimen and ketogenic diet achieve the same purpose—ketone body. BHR, Bigu-herbs
regimen; KD, ketogenic diet; KB, ketone body; NK, nutritional ketosis; β-HB, β-hydroxybutyrate; AcAc,
acetoacetate.

preserve physiological functions in mice. The known
mechanisms are the following: (1) KDs can increase
protein acetylation levels; (2) regulate mTORC1

signaling in a tissue-dependent manner [147]; (3)
upregulate peroxisome proliferator-activated
receptor-α target genes that cause proliferation of
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peroxisomes [148]; (4) render cells more resilient
against DNA damage and metabolic insults via
NAD+-related mechanisms. NAD+ is a marker of
cellular health and a substrate for enzymes correlated
to longevity and DNA damage repair [149]. A
large-scale prospective cohort study (n > 135,000)
showed that nutritive carbohydrates increase human
mortality, whereas dietary fat reduces it [150].

Side effects and contraindications

Adverse events attributed to KDs are generally minor
(grade 1–2) [125]. The probability of benefits seems
greater than that of the disadvantages, such as causing
serious side effects when offering KDs to cancer
patients [116]. The common side effects are mild and
include acidosis (insulin dysfunction), constipation,
and insomnia. The less common ones are growth
inhibition (more significant at young ages), kidney
stones (6%), and hyperlipidemia [27]. Short-term
effects include dehydration, anorexia, nausea,
constipation, acidosis, and hypoglycemia. Long-term
effects include severe hepatic steatosis, disruptions in
lipid metabolism, mineral deficiencies, nephrolithiasis,
and increased redox imbalance [75]. The increase in
cholesterol may be caused by a decrease of
apolipoprotein B, the major serum carrier of
cholesterol, which can be reversed by adjustments to
the diet (e.g., increased protein and polyunsaturated
fats) [151].
Most of the adverse effects may be preventable and

treatable. Increasing meal frequency may improve diet
tolerance [46]. There may also be an increase in serum
uric acid levels when this fat catabolic product
increases concentration in the blood but is not excreted
efficiently. Sufficient fluids and oral alkalis are
prescribed to reduce the incidence of kidney stones.
Ample sleep, high-fiber diet, and supplementation of
vitamins and minerals are recommended to overcome
the side effects [75].
Some lipid metabolic disorders, such as

pyruvate-carboxylase deficiency, defects of fatty acid
oxidation, carnitine deficiency, and mitochondrial
disorders, are thought to be contraindications to KD
[152].

Predicament and prospect

Both BHR and KD could promote KBs production by
limiting carbohydrate intake, resulting in an energy
metabolic reprogramming to achieve a state of NK.
Insufficient carbohydrate intake leads to a decrease in
blood glucose and insulin, an increase in insulin
sensitivity and fatty acid mobilization, and
consequently promote the formation of KBs. NK has a
beneficial effect on metabolism, the nervous and
immune systems, and the body’s anti-tumor
mechanisms, thereby promoting health and aging

(Figure 1).The specific diet plan of KD is uncertain
and related research is still in the clinical stage. The
effect of NK on epilepsy and weight loss is relatively
demonstrated and has been in clinical application.
However, further studies on the role of NK in the
treatment of diabetes, AD, tumor, autoimmune diseases,
and other chronic diseases still mostly require
high-quality clinical trials. KD- and BHR-induced NK
provide a safe and efficient approach to the study
regarding its effects on aging and potential treatment
of various diseases. Hopefully, further studies will
enable us to understand how NK can be implemented
and how it can complement established treatments.
In terms of compliance, patients are more willing to

accept natural therapies without chemical drugs. On
another note, it seems difficult to strictly apply a
long-term KD in the Chinese cultural context because
their staple foods (rice/noodles) mainly consist of
carbohydrates. In terms of security, there is still a lack
of data to support long-term KD [153]. Meals must be
carefully chosen according to one’s illness, nutrition,
etc., to formulate an individual ketogenesis plan.
Applying KD as part of a treatment plan requires a
specially trained dietitian and medical team and is
often difficult to reimburse [154]. Traditional BHR
experts with rich practical experience could be referred
to, however.
In the future, joint studies may be conducted on

multiple targets to identify mechanisms, and the
clinical investigation and transformation of animal
researches will be carried out to develop more rational
and practical regimens, more ketogenic products, and
even more advanced methods, such KB-based
intravenous and oral preparations for clinical use.
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