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Abstract

Malaria is a ubiquitous tropical disease which occurs by the bite of malaria parasite of genus
Plasmodium spp. The procurement and treatment of malaria depend on the cost and
emergence of drug resistance, chemical compositions of drug molecules, and different
complications and toxic effects associated with them. The antimalarials are classified as
gametocidal, prophylaxis, blood schizonticides, tissue schizonticides and sporontocides. In
addition, new antimalarial drugs have been discussed in the present review that offers the
advantage singly or in combination with other drugs. The ridiculous vector control methods,
appearance of drug-resistant parasites, and deficiency of effective vaccines against malaria
are the main aspects responsible for the expansion of malaria. Hence, the development of a
new drug is the need of hour to conquer the clinical failures of traditional chemotherapy.
Though, the discovery and development of a new drug is a costly and lengthy process, hence
different nanotechnological techniques may recommend hopeful approaches for the
procurement of malaria amid minimum side effects. Delivery of traditional anti-malarial
drugs in nanoform offers an opportunity to improve their therapeutic efficacy, reduced
side-effects by targeted delivery and improved patient's compliance. This review article will
critically highlight the different traditional, hybrid and new anti-malarial drugs. Moreover,
different nanocarriers discovered for the site specific liberation of antimalarials to enhance
the therapeutic efficiency of these drugs have been comprehensively discussed in this
review.
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Background

Malaria is an awfully contagious disorder, which is dangerous for
public health all over the world. It is a protozoal infection caused by
Plasmodium (P.) spp., by the bite of infected female Anopheles
mosquitoes [1]. It introduces different species of Plasmodium into the
blood of host and spreads infection [2, 3]. P. falciparum, P. malariae, P.
knowlesi, P. ovale, and P. vivax are the different Plasmodium genuses
that are toxic to humans [4, 5]. P. vivax and P. falciparum are the most
prevalent source of malaria [6, 7], while P. vivax produces a
hypnozoite in dormant liver stage that can elicit reversion after
primary infection [8]. Low birth weight, anemia, and neurological
problems are the severe morbidities that have been found to occur in
millions of children from malaria prevalent areas. To evade the threat
of drug resistance, the accessible antimalarials were fabricated to
target the different pestilential blood stages of parasite in patients [9].
Lack of proper diagnosis, inaccurate dosing, poor quality of drug and
poor patient compliance are the different factors that are liable for
disappointment of malaria treatment [1, 10]. It has been reported that
the malaria parasite became resistant from the main classes of
conventional antimalarial drugs like aryl amino-alcohols
(lumefantrine, mefloquine and quinine), antifolates, antibiotics
(doxycycline and clindamycin), 4-aminoquinolines (amodiaquine,
chloroquine, and piperaquine), napthoquinone (atovaquone), and
artemisinin derivatives [11]. This led to the dissuasion of
monotherapy of these drugs and developed an instant requirement to
invent delivery systems that will deliver the suitable quantity of drug
at target site, improve patient compliance, reduce drug toxicity, and
block parasite transmission to avoid drug resistance and eradicate the
asymptomatic and cryptic hepatic symptoms associated with
conventional antimalarials [12, 13]. Antimalarial hybrid compounds,
combination therapy, new malarial therapy, or repurposed
anti-infective drugs alongwith antimalarial drug entrapped in
nanocarriers have presented as the alternative treatment options to
eliminate drug resistance [1, 14-18]. The merozoite surface is adorned
with proteins that mediated the incursion of human erythrocyte, so, a
drug delivery technique that involved integration of groups to deliver
drug at the target sites on parasite surface is needed [19]. The present
review will comprehensively discuss different combination therapies
for malaria, the antimalarial hybrid composites, new malarial therapy
and use of nanotechnology to encapsulate conventional antimalarials
as new treatment options for malaria. They could represent a possible
future solution against malaria by introducing targeted drug release
from nanocarriers to enhance the therapeutic efficacy.

Wheel-of-life of malaria parasite

The wheel-of-life of P. falciparum is shown in Figure 1. Biorhythm of
malaria parasite initiates by introduction of sporozoites from the
salivary glands of an infected female mosquito in blood of human
host. On bite of infected female Anopheles mosquito, the sporozoites
enter into the blood of host through its salivary glands and reach the
mammalian liver within minutes [20, 21], which then grow and form
schizonts. These schizonts bursts and release haploid merozoites,
which attacks the proteins through precise receptors present on the
erythrocyte surface and re-enters into the blood circulation [22]. The
pathogenic vulnerabilities of these parasites could be beleaguered by
minute particles [23]. Drug molecules having ability to target the
different stages of parasite in liver would provide safety against
infection and could eradicate the enigmatic hypnozoite formed by P.
vivax and P. ovale.

The symptoms of malaria are observed during the blood stage as
merozoites are discharged from liver into the systemic circulation.
These merozoites assault in red corpuscles and begin asexual
developmental cycle through trophozoites, rings, and schizonts upto
48 h. In this cycle, some of the parasites developed into gametocytes
by the process of gametocytogenesis [13], and send out to the
mosquito. After maturation, gametocytes are converted into
microgametocytes and macrogametocytes; and leaches into the red
blood cell (RBC), which by exflagellation generate male and female
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gametes in the vital fluid of human host that act as a meal for infected
mosquito [23]. Thereafter, the fertilization occurs and zygote is
differentiated into motile and insidious ookinete. In this, the diploid
genome undergoes meiosis [24, 25]. The existing ookinetes converts
into oocysts during passage through the gut wall of mosquito and
undergoes endomitosis to produce thousands of daughter sporozoites,
which migrates from its gut wall towards the salivary gland of
mosquito where the lifecycle instigates again. To eradicate malaria, it
is mandatory to invent new drugs that would obstruct the transfer of
parasite between the mosquito vector and the host. The invention of
new and efficient antimalarial drugs is the need of the hour to
eradicate the drug toxicity and to eliminate the risk of drug resistance
against P. falciparum [26, 27].

Traditional therapeutics for malaria treatment

Antimalarial drugs are categorized depending on their chemical
composition and antiplasmodial potential in the malaria life process
(Figure 2).

Quinine

Quinine is extracted from Cinchona bark, which is also known as
Cardinal's bark, Jesuits' bark, or sacred bark. It is related to aryl amino
alcohol group and is considered as the former victorious drug used to
cure malaria. It alters the hemoglobin digestion ability of
intra-erythrocytic malaria scroungers that increase the quantity of
partially degraded hemoglobin up to toxic level [28]. It can be
consumed both by oral and parenteral routes, and within 1-3 h
accomplishes peak concentrations in blood circulation and is having a
half-life of 11-18 h. It binds with alpha-1 acid glycoprotein and works
as gametocytocidal against P. malariae and P. vivax. It is used in
combination with clindamycin to improve its anti-malarial effect [29].
The common side effects associated with quinine are cinchonism,
impairment of hearing, producing tinnitus, nausea, and headache
alongwith blindness and dizziness. In addition, severe adverse effects
associated with quinine are asthma, psychosis, hepatic injury, and
thrombocytopaenia [30].

Chloroquine

Hans Andersag discovered chloroquine in 1934 as an antimalarial
drug to treat harsh malaria. It is reasonable, highly stable, enormously
endured by people in high doses [31]. Chloroquine has been reported
to prohibit the proliferation of parasite during erythrocytic stage by
impeding the hemoglobin digestion capacity of parasite. It accruses in
the Plasmodium parasite and forms chloroquine heme complexes that
inhibits the assimilation of hemozoin crystal. This complex undergoes
peroxidation process and damages the double layer of lipid membrane
present on surface of Plasmodium. The accretion of the chloroquine is
diminished in the digestive vacuole of defiant parasite as Pfcrt genes
are highly articulated in it. Continuous use of chloroquine in higher
concentration for longer duration leads to different side effects like
blindness, neuromyopathy, retinopathy and diplopia [32, 33].

Mefloquine

During 1970s, Mefloquine was invented as a potent antimalarial drug
by the United States Army. It is related to the aryl amino acid group of
anti-malarial agents that targets the P. falciparum 80S ribosome. It is
effective against all five strains of malaria known to affect humans
[34]. It has been reported to act as a blood schizonticidal agent and
forms toxic complexes against the parasite with free form of heme. It
is used in prophylaxis of travelers and efficient against the
multidrug-resistant P. falciparum malaria. It is safe for pregnant and
breast feeding mothers, and has a half-life of 2-4 weeks [35]. It gets
metabolized into carboxymefloquine by cytochrome P450 3A4 in the
liver and this metabolite cause drug interactions [36]. The
dose-related side effects associated with it include vomiting, nausea
and dizziness [37]. Due to its neuropsychiatric unfavorable effects, it
is contraindicated for psychiatric patients.
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Primaquine

Primaquine, introduced in 1950s is an 8-aminoquinoline analogue
which is synthesized from plasmoquine. It is a pro-drug that is
metabolized by oxidative deamination process with the help of
monoamine oxidase A (MAO-A) into carboxy-primaquine, that has
been found to exhibit potent activity against hypnozoites [38]. It has
also been demonstrated that primaquine shows its efficacy against
hypnozoites by interfering with its electron transport chain. It
generates reactive oxygen species that assassinates the mature
gametocytes, dormant hypnozoites, schizonts and developing
parasites in liver, liable for reversion of malaria activated due to P.
ovale and P. vivax [39]. It is the single commonly accessible
antimalarial drug that neuters established P. falciparum gametocytes
rapidly [40]. It produces synergestic effect with a blood schizonticidal
agent due to their partial asexual stage activity. It causes rigorous
haemolysis in glucose-6-phosphate dehydrogenase (G6PD) enzyme
deficient people [41]. The deficiency of this enzyme leads to lysis of
premature RBCs [42]. The severity of haemolysis is based on the dose
and level of deficiency.

Atovaquone

Wellcome  laboratories  launched  atovaquone  (hydroxy-1,
4-naphthoquinone) in 1980s as an antimalarial medicine, which is
active against both blood and liver phases of Plasmodium parasite, and
hence used as a broad-spectrum antiprotozoal agent [43]. It has
shown inhibition of mitochondrial electron transport chain of parasite
without causing any harm to host mitochondria. During infection at
erythrocytic stage, mitochondrion of merozoite form parasite, in
presence of dihydroorotate dehydrogenase enzyme converted
dihydroorotate into orotate and syenthesized pyrimidine ring. Further,
GlaxoSmithKline developed Malarone (mixture of proguanil and
atovaquine) for the threapy and protection of P. falciparum malaria.
Proguanil is quickly absorbed while atovaquone is weakly absorbed
from the gastrointestinal tract. It is available in different combinations
like for adults (Proguanil (100 mg) and atovaquone (250 mg)) and for
pediatrics (proguanil (25 mg) and atovaquone (62.5 mg)). It is a
potential broad-spectrum antiviral drug that acts potentially by
influencing viral RNA replication, by inhibiting the biosynthesis
pathway of pyrimidine [44], or prohibiting the viral entry by
interfering with viral glycoprotein-mediated membrane fusion [45,
46]. It is found to be active against arboviruses, chikungunya virus,
dengue virus and Zika virus [44, 45].

Tafenoquine

Tafenoquine is an 8-aminoquinoline derivative and has been approved
as monotherapy in dosage of 200 mg/day for 3 days and then followed
by weekly maintenance doses approx. 200 mg thereafter for travelers’
prophylaxis [47, 48]. It is the single drug that can be used for
once-weekly prophylaxis in chloroquine- and mefloquine-resistant
parasites and in combination with chloroquine for the preclusion of
reversion of P. vivax infection [49]. Tafenoquine destabilizes the
cellular homeostasis in established hypnozoites and metabolizes into
highly active and unstable multiple hydroxylated species that further
converts into quinoneimine metabolites. Under aerobic conditions,
these metabolites can be reconverted into the hydroxylated
derivatives leading to redox recycling and accretion of hydrogen
peroxide. The parasite of infected hepatocytes was demised due to
accumulation of reactive oxygen species [50]. It can cause rigorous
hemolytic anemia in G6PD-deficient persons. G6PD deficiency is an
inherited X-linked genetic disorder that is widespread in malaria
endemic regions and thus affects a huge population that is vulnerable
to malaria contagion [50].

Artemisinin

Artemisinin is sesquiterpene lactone peroxide obtained from the
leaves of Artemesia annua shrub also known as Qinghao in China [51,
52]. Endoperoxide bridge of Artemisinin is responsible for its activity
against Plasmodium species [53]. This bridge on rupturing generates a
highly reactive oxygen species that can alkylate sensitive proteins and
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cellular metabolites, leading to the demise of parasites [54, 55].
Artemisinin and its derivatives like arteether, artesunate
dihydroartemisinin, and artemether are highly efficient against blood
and early gametocyte phases of P. falciparum [56]. These derivatives
solved the problems like solubility and bioavailability that were
associated with artemisinin. Among different derivatives, artemether
as oil-soluble is delivered intramuscularly whereas dihydroartemisinin
and artesunate are water-soluble and delivered by oral route but in
severe cases artesunate is administered via intravenous route. The
combination therapies are used to avoid the probability of resistance
due to oral monotherapy [52, 57]. This combination therapy is highly
effective and suggested as first-line treatment for simple malaria. To
improve the efficacy of artemisinin, different monomers like dimers,
trimers, and tetramers have been amalgamated [58, 59]. Artesunate is
a polar derivative that can be delivered by different routes like rectal,
oral, intravenous and intramuscular.

New antimalarial drugs

The different projects related to antimalarial drugs for the discovery
and launch of new antimalarials in market is supported by MMV
(Medicines for Malaria Venture) since last decade. MMV in
collaborations with its partners has widened the scope of antimalarial
drugs. Different drugs and their combinations are under clinical trials.
A list of new drugs is shown in Table 1.

KAF156/Lumefantrine

A team from the Genomics Institute of Novartis Research Foundation
identified a new antimalarial drug KAF156, belonging to
imidazolopiperazine class, which is also known as ganaplacide [60]. It
is highly effective and more biocompatibile than other formulations
[61]. It could block transmission, avoid infection and cure acute
malaria as preclinical studies evidenced the antimalarial activity of
KAF156 against different stages of Plasmodium [62]. Its
pharmacokinetic (PK) profile from results demonstrated it as a well
tolerated single-dose regimen for 3 days without any adverse effect in
humans [63]. Currently the combination KAF156 and lumefantrine is
under clinical trials in phase IIb of that evidenced its improved
bioavailability in daily administration [64]. KAF156 has shown a fast
clearance rate against the defiant strains of P. vivax and P. falciparum
[65]. Thus, it is introduced as a next generation antimalarial
candidate, with enhanced charcteristics. Further investigation is
needed to be conducted in order to recognize its mechanism of action
and to identify its activity alongwith safety and efficacy on
simultaneous administeration of lumefantrine.

Artefenomel

0Z439 is a novel synthetic peroxide anti-malarial candidate, also
known as Artefenomel due to similarity of some of its chemical groups
with artemisinin derivatives [66]. Its preclinical studies evidenced its
good antimalarial properties with minimum adverse effects in rats
[67]. Furthermore, the outcomes from phase I clinical trials confirmed
its safety and results from phase II that evidenced its parasitemia
clearance subsequent to a solitary dose [68]. It has potential against
artemisinin-resistant Plasmodium strains [69].

Ferroquine

Ferroquine has potential to avoid chloroquine resistance towards
Plasmodium [69]. It has been shown to generat hydroxyl radicals due
to formation of the ferriquinium salt in aerobic environment of the
digestive vacuole of malarial parasites due to emendable one-electron
redox reaction. This causes lipid peroxidation near to the membrane
of digestive vacuole that inhibits the formation of hemozoin. The
generation of reactive oxygen species (ROS) leads to death of the
malarial parasites. Due to long half-life, it can be used as a candidate
in combination therapy for malaria treatment [70]. It is also effective
against artemisinin combination therapies (ACT)-resistant malaria and
all asexual stages of parasite [71]. Recently, the combination of
artefenomel-ferroquine is under phase IIb of clinical trials to evidence
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its efficacy and safety as a solitary dosage regimen. This amalgamation
is a potent TPP1 candidate with excellent anti-malarial properties. It
has long half-life and has a limitation not to assault all gametocytes.

Cipargamin

KAE609 or Cipargamin is an antimalarial drug of spiroindolone
family. It was discovered by Novartis, Wellcome Trust, MMV, and the
Swiss Tropical and Public Health Institute in partnership. It has been
reported to show potent activity against all blood stages of parasite
[72]. It has shown potent action against different stages of P.
falciparum, [73], including gametocytes. It blocked the transmission of
infection in single- or multiple-dose regimen [74]. Phase II of clinical
trial evidenced different advantages of KAE609 like rapid action, an
excellent safety profile, desired potency and exceptional efficiency
against simple malaria [83]. Now KAE609 is under consideration to
study its efficacy as single dose regimen against uncomplicated or
severe falciparum malaria [84]. Outcomes of Phase II clinical study of
cipargamin evidenced it efficacy against P. falciparum and P. vivax

MMV048

A research group from the University of Cape Town and Griffith
Research Institute for Drug Discovery in collaboration invented a
novel antimalarial drug MMV048, also known as MMV390048 from
the aminopyridine class [60]. It is active against numerous asexual
blood phases of the parasite, alongwith maximum efficiency against
the schizont form. It is a broad spectrum antimalarial candidate
having efficacy against gametocytes that blocks transmissions and
suitable for treatment. The outcomes from preclinical studies
conducted on animals demonstrated its potential as a prophylactic
agent, transmission-blocker, and as a single-dose curative therapy. It
has long half-life and is effective orally against different liver stages of
parasite [76]. Different clinical trials were conducted on MMV048 to
evidence its safety, tolerability, and to recognize the PK profile of
drug. Their results demonstrated the safety and effectiveness of drug
as a solitary-dose case-management drug [77]. Further studies are
needed to be conducted to recognize the precise safe dosage and
synergestic combinations of MMV048 with other drug partners. Its

malaria [75].

teratogenicity potential limited its application by MMV.

Table 1 List of new anti-malarial drugs under clinical trial

Name of drug Class Mechanism of action Clinical indications References
KAF156 or Imidazolopiperazine It acts by forming complex with Effective in different [60-65]
Ganaplacide hemin, inhibits f~hematin and Plasmodium stages, Efficient
nucleic acid against the defiant strain of P.
falciparum and P. vivax
0Z439 or Artefenomel Synthetic trioxolane It generates carbon-centered free Effective against [66-69]
radicals due to reductive artemisinin-resistant
activation of peroxide which Plasmodium strains
alkylate heme and
kills the parasites.
Ferroquine Ferriquinium It generates ROS and inhibits the Effective against [69-71]
hemozoin formation. ACT-resistant malaria and
against all asexual stages of
parasite
KAE609 or Cipargamin Spiroindolone It inhibits the P-type Effective against different [72-75]
cation-translocating ATPase ATP4 stages of P. falciparum and
of P. falciparum (PfATP4), that against all parasitic blood
leads to osmotic dysregulation stages
due to disturbance in parasite
sodium homeostasis
MMV390048 Aminopyridine It acts by inhibiting Plasmodium Effective against asexual [76, 771
phosphatidylinositol-4-kinase blood stages of the parasite
(PI4K) that is an attractive target
for anti-malarial drug
M5717/DDD498. Quinoline-4-carboxamide  Acts by obstructing the elongation Effective against liver-stage [78-80]
factor of P. falciparum schizonts
P218 Antifolate Acts by overcoming antifolate Effective against [81-83]
resistance, and inhibiting P. falciparum
exflagellation schizonts in liver and blood
stages
PA92 Pyrazoleamide It acts by inhibiting ATP, Effective against erythrocytic [84-86]
P. falciparum
SJ733 Dihydro-isoquinolone It targets ATP, and leads to Na* Effective against erythrocytic [87, 881
homeostasis in the parasite P. falciparum
5

Submit a manuscript: https://www.tmrjournals.com/dct



REVIEW

Drug Combination Therapy 2022;4(4):18. https://doi.org/10.53388/DCT2022018

M5717

The Drug Discovery Unit from the University of Dundee and MMV in
collaboration produced a product M5717, which belongs to
quinoline-4-carboxamide scaffolds family. Primarily, it is also known
as DDD498. It has shown inhibition of the elongation factor 2 of P.
falciparum [78]. The outcomes of preclinical studies have evidenced
the exceptional blood stage activity of M5717 without any severe
side-effects, and confirmed its ability as single-dose regimen [79]. The
phase I of clinical trial was conducted to evaluate its PK details, safety,
tolerability, and parasite clearance in fit persons followed by P.
falciparum infected persons [80]. It has long half-life and is suitable for
solitary-dose ~ regimen  when  amalgamated  with  other
immediate-acting molecules. As it has activity against liver-stage
schizonts, so it is considered as a TPP2 candidate. More studies are
needed to evidence its safety, efficacy, and PK profile, as well as for
the estimation of resistance evolution.

P218

P218 is active against both P. falciparum schizonts in the liver stage
and the blood stages of Plasmodium [81]. It can be administered
parentrally as a single dose due to its long half life. This drug is
developed by collaboration of Janssen and MMV. The foremost studies
conducted in phase I of clinical trial demonstrated its good tolerance,
safety, and PK profile and confirmed its antimalarial potential [82].
The subsequent studies of phase I clinical trials were conducted to
confirmed its safety and admissibility with excellent protective
efficacy. It has a short half-life that may limit its future development
as antimalarial agent and discontinued by MMV [82, 83].

PA92

PA92 is a pyrazoleamide derivative that affected the cation pumping
and induced a rapid disruption of Na* regulation in the blood-stage of
intraerythrocytic P. falciparum parasites. An increase in Na™ in the
cytoplasm of parasite is predicted to increase the intake of water,
swelling of cells and eventually cause bursting of the parasite. It has
shown prohibition in the creation of male and female gametes [84,
85]. PA92 led to quick clearance of parasite when given orally to P.
falciparum-infected immunodeficient mice [86]. Preclinical studies
evidenced its safety margin, high oral bioavailability as well as
transmission blocking potential.

SJ733

SJ733 is a dihydroisoquinolone derivative that is responsible for fast
apprehension of Na* homeostasis in the parasite. This disturbance
leads to different physical alterations in the infected cells like
augmented membrane firmness and  externalization  of
phosphatidylserine, regular erythrocyte suicide. It has shown
persuasive potential against erythrocytic P. falciparum and acquiesced
quick parasite clearance, as clinically studied in P. falciparum-infected
immunodeficient mice [87]. The outcomes from Phase 1 clinical
studies and PK/PD models demonstrated that due to moderately
clearance rate of SJ733, it is used as a curative dose in
pharmaco-enhanced therapy. The preclinical studies and phase I
clinical trials were conducted to identify its pharmacokinetic and
safety profiles [88]. It is used as anti-malarial in multiple doses.

Combination therapy

Different combination therapies have been reported to show potent
antimalarial effects, which are:

(1) Artefenomel-ferroquine: This is a combination synthetic ozonide
based artefenomel and a 4-aminoquinoline based ferroquine.
Artefenomel have elimination half-life in the range of 46-62 h [89].
The main aim of combination therapy is to make a single-dose
remedial therapy. Ferroquine has a long elimination half-life (16 days)
and has potential to retain its activity against chloroquine-and
piperaquine-resistant parasites. It has been found effective to treat
uncomplicated falciparum malaria on combination with artesunate
but it is fairly effective as monotherapy [90].
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(2) In Lumefantrine-KAF156: This combination is a potent
imidazolopiperazine and an aryl-amino alcohol are given
simultaneously. It has an elimination half-life of 44.1 + 8.9 h [65]. A
new formulation of lumefantrine in solid dispersion can be given once
daily to study their safety, efficacy and pharmacokinetic profile [64].
(3) Fosmidomycin-piperaquine: Fosmidomycin is an inhibitor of
isoprenoid biosynthesis used as antibacterial drug. It has a good safety
profile [70].

Antimalarial hybrid compounds

This has been demonstrated that the hybrid compounds are more
efficient against Plasmodium parasite than the individual drugs. The
antimalarial activity of these compounds was depended on the design
and the type of the linker between the hybridized molecules. Some
hybrid compounds have shown cytotoxic effects on mammalian cells.
Antimalarial hybrid compounds are categorized according to
pharmacophores that are hybridized simultaneously such as
artemisinin-based hybrid compounds and non-artemisinin hybrid
compounds.

Artemisinin-based hybrid compounds

Smit et al. esterified chalcones with dihydroartemisinin to form
dihydroartemisinyl-chalcone esters [91]. These compounds have
shown efficacy against both chloroquine-resistant and sensitive strains
of parasite. The antimalarial activities of these compounds are similar
to dihydroartemisinin but more effective than artesunate against the
W2 and 3D7 strains of the Plasmodium scroungers. Thermally, these
hybrids were found to be more stable than dihydro-artemisinin, hence
they can be stored at hot environments and in sultry malaria-endemic
areas [91]. Lange et al. attached ferrocene via piperazine linker with
dihydroartemisinin and prepared a new artemisinin-based hybrid
compounds. They were found effective against both
chloroquine-resistant and chloroquine-sensitive strains of P. falciparum
parasites [92]. These hybrids did not induce -cross-resistance.
Moreover, they were highly selective toward Plasmodium parasite than
mammalian cells. Capci et al. combined artemisinin with different
selected natural products to produce new hybrid compounds [93] and
demonstrated their good antiplasmodial efficacy than individual
drugs. They are more effective than artesunic acid and chloroquine.
Wang et al. hybridized artesunate with quinoline derivatives to
improve their antimalarial activity. This compound has shown a
significant decrease in parasitemia [94]. Furthermore, Walsh et al.
used ester linkage to hybridize dihydroartemisinin with quinine
carboxylic acid [95] and demonstrated good antimalarial activity than
the individual artemisinin and quinine. Joubert et al. hybridized
artemisinin and acridine pharmacophores by an aminoethyl ether
connecter by a microwave-assisted radiation method [96]. These
compounds have shown good antiplasmodial activity against both
sensitive and resistant strains of chloroquine. These compounds
showed seven-fold more effectiveness against both NF54 strain of P.
falciparum and the gametocytocidal strain due to ethylenediamine
linkage than chloroquine [97].

Nonartemisinin-based hybrid compounds

Quinoline-based and ferrocene-based hybrid compounds are other
compounds that have been synthesized from artemisinin derivatives.
They are also effective against Plasmodium parasite on the basis of the
Plasmodium life cycle.

Quinoline-based hybrid compounds. Bhat et al. incorporated
4-aminoquinoline with 1,3,5-triazine and primed a sequence of
4-aminoquinoline-based hybrid compounds [98]. In vitro preclinical
studies were conducted to evaluate its antiplasmodial potential
against chloroquine-sensitive and resistant strains of P. falciparum. The
antiplasmodial activities of these compounds are due to presence of
different functional groups like fluoro, chloro, and morpholino on
aromatic ring. They have similar potential like chloroquine against
both strains of P. falciparum but highly active than proguanil. The
docking studies were used for further investigation of antiplasmodial
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activities of these hybrids on wild type and quadruple dihydrofolate
reductase-thymidylate synthase of P. falciparum. The antimalarial
activities of hybrids enclosing 4-aminoquinoline and 1,3,5-traizine are
due to existence of aromatic lipophilic side chain. They act by
inhibiting the production of beta-hematin [97]. Maurya et al
syenthesized hybrid compounds from 4-aminoquinoline-pyrimidine
and evaluated their in vitro antiplasmodial efficacy against both
chloroquine-susceptible and resistant strains of P. falciparum [99].
These hybrid compounds have shown good antimalarial activity than
the standard drug. Docking studies on Pf-DHFR demonstrated the
active position for attachment to heme. Thus, heme is an interesting
target site for hybrid compounds [100]. The antimalarial activity of
hybrid compound is due to existence of m-nitrophenyl substituent at
C-4 position of the pyrimidine ring. The hybrid molecule with a
three-methylene spacer has low antimalarial activity than a hybrid
molecule with four-methylene spacer. The incorporation of an
eliphatic chains with a piperazinyl linker diminsihed its antimalarial
activity. The polymerization of heme to hemozoin is delayed by head
to head piling of the quinoline moiety with the heme, which is
encouraged by steric restriction occurred due to piperazinyl linker
[101]. Kholiya and coworkers synthesized hybrid compounds from
4-aminoquinoline-piperonyl-pyrimidine that were more active than
chloroquine. The antimalarial activity of hybrids is based on the
position of pyrimidine ring on 4-aminoquinoline-piperonyl
intermediates [102]. Barteselli et al. synthesized novel
indenoquinolines hybrid compounds and examined them against
chloroquine-resistant strains of P. falciparum in vitro studies [103].
The existence of aminoguanidine functional group,
methylpiperazinoethylamino and piperidino-ethylamino moieties
augmented the antimalarial activity of hybrids. The antimalarial
activity of the hybrid molecules can also be enhanced by introduction
of the quinolineamine group among the trifluoromethylquinoline ring
and the non-polar region. The hybrid molecule with
3-methyl-1,2,4-triazole substituent has more antimalarial potential
than chloroquine [104]. The antiplasmodial activities of hybrids can
be enhanced by inserting alanine moeity in between the
dioxoisoindoline core and amide linkage. The antimalarial activity of
primaquine hybrids can be improved by introduction of chlorine
group at 7th position [105]. Moreover the antimalarial activity of
1,3-dioxoisoindoline-4-aminoquinolines hybrid compounds’ can be
augmented by increasing the length of their chain which is adequate
in B-alanyl and glycyl bonded compounds [104].

Ferrocene-based hybrid compounds. Kumar et al. primed and
evaluated a series of ferrocenylchalcone-B-lactam hybrid composites
against chloroquine-resistant and sensitive strains of P. falciparum
[106]. The antiplasmodial efficacy of the p-lactam nucleus is
increased by ferrocene moiety. The moiety present at N-1 position of
B-lactam ring inclined the antiplasmodial activity of the hybrid. Raj et
al. amalgamated and observed in vitro antimalarial activity of
7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone
hybrid compounds against the chloroquine-resistant strain of P.
falciparum. Different methods like increasing the length of carbon
chain and introducing methoxy group as a side chain at the para
position of another ring on chalcones can be used to enhance the
antiplasmodial activity of these hybrids compounds [107]. The studies
revealed the safety, efficacy and selectivity of these hybrid compounds
against mammalian cells and P. falciparum. Garcia-Barrantes and
coworkers premeditated and amalgamated novel hybrid composites
by 3-(ferrocenylmethyl)-1,4-naphthoquinone and then investigated
them in vitro against chloroquine-sensitive and resistant strains of P.
falciparum [108]. Ferrocene molecule is allied with a basic alkylamine
and 4-aminoquinoline covalently to form Ferroquine [109]. The
outcome of Phase 2 demonstrated its effectiveness either alone or in
combination with artesunate against chloroquine-resistant and
multiresistant strains of parasite. It forms complex with haematin by
targeting the non-poalr site of hemozoin, thus, inhibited the
B-haematin formation [110]. It undergoes reversible redox reaction
and generates hydroxyl radicals in aerobic surroundings of the
digestive vacuole of Plasmodium scroungers that influenced its
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stability [111]. Chopra et al. prepared ferrocene-pyrimidine hybrid
molecules. The lipophilicity and antimalarial potentials of these
compounds can be increased by inserting ethyl and isopropyl as a
side-chain at the C-5 position of the pyrimidine ring [112].

Nanotechnological approaches for malaria therapy

Recent antimalarial therapy has been known to relay on
chemotherapy that includes severe lethal effects and appearance of
resistant parasites, which ultimately causes unsuccessful malaria
therapy. The development of new antimalarial therapy is the need of
the hour to prevail the clinical failures encountering during therapy.
The development of new drug is a time consuming and expensive
process [113]. Various charitable organizations like MMVs, different
research institutions, universities and pharmaceutical industries have
planned and amalgamated new antimalarial compounds and
evaluated them in different in vitro and in vivo models against
Plasmodium parasite [114]. The researchers have to face great
challenges to discover new drugs for malaria therapy due to speckled
positions of malaria parasite during erythrocytic and exo-erythrocytic
stages in the host, complication of parasite life cycle and deficient
information about pathology and biology of malaria parasite [115]. In
recent times, nanotechnological approaches have achieved
importance due to improved safety and efficacy alongwith targeted
drug delivery [116]. Nanotechnologies play an important role for
pharmaceutical and biotechnological industries in designing and
preparation of nanocarriers encapsulated with antimicrobial agents
and in avoiding the toxic effects associated with them [117]. The main
aim of malaria therapy with nanocarriers is the targeted delivery of
drugs in parasite infected hemocytes and intracellular parasitic
vacuoles. Moreover, the emergance of nanomaterials would augment
the safety, efficiency, modify the solubility and pharmacokinetic
profile of drugs, selectivity, prevent drug deprivation and approve
sustained liberation of drug directly at target site. Nano-vectors
encourage combination therapy by encapsulating more than one drug
to produce synergistic effects [118]. Different nanocarriers like solid
lipid nanoparticles (SLNs), liposomes, metallic nanoparticles,
nanostructured lipid carriers (NLCs), polymeric nanoparticles and
nano-emulsions have been investigated and found applications as
nanocarriers for targeted drug delivery [119]. Surface adorned
antimalarials loaded nanoparticles increases targeted delivery and
enhanced its safety and efficacy [28]. Various research groups have
designed nanobased formulations containing antimalarial drugs and
investigated its efficacy against Plasmodium parasite-infected animal
models. Few conventional antimalarial drugs with purposed
nanocarriers antimalarials are given discussed in Table 2.

Liposomes

Liposomes are widely used nano-vectors that are prepared by using
cholesterol or other natural phospholipids for the targeted drug
delivery. They can modify the cellular and tissue uptake and augment
the delivery of medicines to specific sites, thus, improve the
therapeutic benefits by site specific delivery of active therapeutic
agents [120]. These are spherical shape vesicular structures comprised
of one or more coextensive lipid bilayers, surrounded by distinctive
polar space. Lipid composition, small particle size, charge,
hydrophilic-hydrophobic balance, number of lamellae,
biocompatibility, ability to incorporate both lipophilic and
hydrophilic therapeutic moieties and further morphological alteration
by using different ligands and polymers are the unique characteristics
that are necessary for site specific targeted delivery of drug. They have
prolonged circulation and high retention time [121, 122]. Bangham, a
British haematologist was the first to describe liposomes as ‘smectic
mesophases’ and afterward named as ‘liposomes’ by Gerald
Weismann, an American physician [123]. Their unique characteristics
made them a suitable candidate to encapsulate and for targeted
delivery of antimalarials [124, 125]. Ibrahim et al. prepared trans
platinum-chloroquine diphosphate dichloride loaded liposomes with
potent antiplasmodial activity [126]. Aditya et al. used thin-film
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hydration method to prepare curcminoid-loaded liposomes and united
them with a/p arteether [127]. The preparation was injected to
evaluate its efficacy in P. berghei-infected mice. Rajendran et al. used
distearoyl phosphatidylethanolamine-methoxy-polyethylene glycol
2000, soya phosphatidylcholine and cholesterol to prepare liposomes
for the targeted deliverance of monensin and artemisinin. This
amalgamation has shown outstanding effect in killing the parasites,
repressed parasite recrudescence and improved survival [128] at the
trophozoite and schizont stages. The liposome formulation
encapsulated artemisinin can be used in resistant strain of P.
falciparum and avert reoccurrence of malaria. The improved uptake of
liposomes in brain tissue further recommends its potential against
cerebral malaria caused due to P. falciparum infection. Artesunate
encapsulated in liposomes with B-artemether for sustained release of
drug has been shown to reduce the dose frequency and is found
beneficial in malaria-resistant treatment [129]. Liposomes acted by
different mechanisms like encapsulation of chloroquine in
pH-sensitive liposomes or membrane fusion have been reported to
conquer drug-resistant malaria [125]. However, their use is limited in
drug delivery due to cytotoxic effects, expensive production and
complicated storage and sterilization. Recently, polyethylene glycol,
phosphatidylglycerol and phosphatidylethanolamine have been put in
combination in order to prepare negatively charged liposomes for the
targeted delivery of antimalarial drugs [29].

Solid lipid nanoparticles (SLNs)

SLNs, launched in 1991, include the inner core composed of solid lipid
and surfactants [130]. The matrix of SLNs is composed of lipids having
high melting points [131-133]. The lipid core of matrix regulates the
discharge pattern and protects the entrapped drugs from enzymatic
and chemical deprivation [131]. Small particle dimension, elevated
drug loading capacity, huge surface area and the interactivity of
segments at the interfaces are the exclusive characteristics of SLNs
that made them interested candidate to encapsulate nutraceuticals,
pharmaceuticals and other materials [134]. Lipid-based formulations
have been known to improve the bioavailability of formulations,
hence used as a carrier to deliver drugs in different parasitic
syndromes like malaria, leishmaniasis, tuberculosis, human African
trypanosomiasis and cancer [135, 136]. Dihydroartemisinin
encapsulated in SLNs improved the water solubility, pharmacokinetic
and pharmacodynamics properties alongwith potent anti-plasmodial
activity [137]. The antimalarial activity of chloroquine loaded SLNs
can be improved by modifying the surface of nanoparticles with
heparin against chloroquine sensitive strains of P. falciparum [138].
The safety and efficacy of lumefantrine and artemether has improved
after encapsulation in SLN [139]. Transferrin and quinine
dihydrochloride are conjugated to encapsulate in SLNs for targeted
delivery of drug in brain to treat cerebral malaria [140].

Table 2 List of conventional anti-malarial drugs with their purposed nanocarriers

Name of drug MOA Clinical indication Nanocarriers References
Chloroquine (CQ) Acts by inhibiting the change Simple malaria, Nanoliposomes, [31-33]
phosphate of toxic heme into nontoxic Chloroquine susceptible P. Hydrogels,
hemozoin and increasing falciparum and Dendrimers
accretion of the toxic heme in P. vivax, P. malariae
parasite
Artemisinin Acts by inhibiting PfATP6 Severe complex Micelles, Polymer-drug [54-57]
exterior to food vacuole of malaria management, conjugates
parasite and ability to kill Chloroquine -resistant P.
gametes and schizonts falciparum
Atovaquone (AT) Restrains the mitochondrial Chemoprophylaxis, Simple Nanoliposomes, [43-45]
respiration of parasite malaria, Chloroquine-resistant Dendrimers
P. falciparum
Primaquine (PQ) It restricts the development of ~ Simple malaria, P. vivax and P. Nanoliposomes, [39-42]
phosphate transport vesicles in the golgi ovale (radical cure) Dendrimers, Polymer drug
apparatus and Interferes with conjugates
ubiquinone
Curcumin Curcumin acts as blood Uncomplicated malaria Hydrogels
schizontocides and inhibits the
functions of enzymes lipid
peroxides
Quinine (QN) sulfate Acts on heme detoxification Severe and uncomplicated Nanoliposomes, [28-30]
pathway and inhibits the malaria, chloroquine-resistant Dendrimers
accretion of cytotoxic heme P. vivax and P. falciparum
within the parasite
Lumefantrine Makes complex with hemin Uncomplicated malaria, Nanoliposomes [61-64]
and inhibits formation of chloroquine-resistant P. Hydrogels
B-hematin falciparum
8
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Nanostructured lipid carriers (NLCs)

Nanostructured lipid carriers (NLCs) are used as a substitute of SLNs
as the second generation lipid carriers in different therapeutic
applications to nullify the complications associated with SLNs. The
NLCs are drug-delivery system with different benefits like improved
permeability, solubility and bioavailability, storage stability, site
specific delivery, diminished toxicity and extended half-life [141].
NLCs are gaining value and have been broadly investigated due to
their exceptional potential like non-immunogenic character, biological
compatibility and harmless behavior [142]. Artemether-loaded NLCs
have shown more prominant antimalarial activity without any safety
issue than sole artemether against P. berghei ANKA-infected C57BL/6
mice [143]. World Health Organization (WHO) permitted a mixture of
artemether-lumefantrine in fixed amount for malaria therapy, but
their use is restricted due to troubles of little solubility and deprived
oral bioavailability. The anti-plasmodial efficacy of NLCs-loaded
curcumin is much better than free curcumin against P. berghei-infected
mice [144].

Metallic nanoparticles

Nanoparticles prepared from oxides of different metals like
aluminium, chloroauric acid, copper, iron, silver nitrate and zinc are
extensively used for diverse medical applications [145]. Silver based
nanoformulations have been used to cure numerous microbial
contagions. Silver based nanoparticles have revealed their efficacy
against P. falciparum [146], which act by degrading the [B-hematin.
The anti-plasmodial activity of metal nanoparticles is enhanced by
adorning their surface with poly 4,4’-diaminodiphenyl sulphone
(PDSS). The aqueous extract of Momordica charantia leaf has been used
as a stabilizer and reducing agent to manufacture titanium oxide
(TiO,) nanoparticles to screen its efficacy against P. falciparum. These
nanoparticles have shown protective effects against
chloroquine-sensitive and resistant strains of P. falciparum [147].
Artesunate encapsulated in surface modified iron-oxide nanoparticle
are more efficient against the P. falciparum than free artesunate. They
showed their anti-plasmodial effects by enhancing the release of
reactive oxygen species in parasitic food vacuoles [148].

Emulsomes

Emulsomes (nanoemulsions) are new colloidal nanocarriers, having
the inner core comprised of solid lipid surrounded by a phospholipid
double layer. Lecithin in high concentration is used as a stabilizer for
oil/water emulsion. Nanoemulsions are lipid-based drug delivery
vehicles but can encapsulate both hydrophobic and lyophobic drugs.
Clotrimazole in the form of nanoemulsions have potential against the
blood stage parasites in P. berghei-infected Swiss mice [149].
Primaquine in form of nanoemulsion has been found effective to
overcome the relapsing problem associated with the liver stage of
malaria parasites [150]. This has been well accepted that a drug in
nanoemulsion form shows improved bioavailability [151].
Artemether-curcumin is delivered in brain synergistically via olfactory
route in form of nanoemulsion to target cerebral malaria. These
nanoemulsions have shown valuable outcomes in P. berghei
ANKA-infected murine model of cerebral malaria [152]. Entrapment
of artesunate and quercetin in self-nanoemulsifying drug delivery
system augmented the bioavailability of drugs and parasite clearance
without any safety issues.

Micelles and dendrimers

In polymeric micelles, the surfactant molecules are self-assembled in
nano size range [153]. These nanocarriers have elongated polymeric
hydrophobic chains and hydrophilic head groups to load drugs
according to their nature [154]. They have different advantages like
improved bioavailability, reduced drug toxicity, sustained and site
specific drug release, suitable for hydrophobic drugs [155].
Dendrimers are highly bifurcated, monodispersed, polymeric
nanocarriers having three-dimensional structures [156]. These
polymeric materials have less polydispersity index, high
biocompatibility and controlled molecular weight [157]. They can
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encapsulate different therapeutic agents and targeted moiety on the
basis of functional groups on the exterior of dendrimers. The
important applications of these delivery systems include improved
drug bioavailability, controlled drug release and reduced drug
associated side effects [158]. Shi et al. designed polymeric micelles
encapsulated chloroquine and docetaxel for combination therapy
[159]. The micelles loaded with poly(ethylene
oxide)-block-poly(propyleneoxide)-block-poly(e-caprolactone) and
D-a-tocopheryl poly(ethylene glycol) exhibited in vitro sustained drug
release. These micelles are safe to be used as they exhibited less
hemolysis rate. Simultaneous administration of both drugs in
polymeric micelles can minimize toxic side effects as they are effective
in less concentration. Movellan et al. used
2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and pluronic
polymers as polymers to encapsulate primaquine and chloroquine in
dendrimers [160]. These dendrimers specifically targeted the
Plasmodium-infected erythrocytic cells than the non-infected
erythrocytes that reveal the prospective of dendrimers to purge out
the malarial infections.

Hydrogels and in situ gels

Hydrogels are polymeric carriers prepared from synthetic and natural
polymers. They have three-dimensional networks like structure [161]
with capability to absorb a large amount of water and biological
fluids. The porosity of polymeric hydrogels depends on the
composition of polymers, the materials from which the polymers are
derived and the preparation methods of hydrogels etc. [162]. Slabs,
nanoparticles, microparticles and films are the different forms of
hydrogels [163]. Good biocompatibility, non-toxicity,
non-immunogenicity, affordability, environmental sensitivity, and
their modified drug release mechanism are the unique characteristics
of this system. The polymers that are utilized to form hydrogels
include pectin, carrageenan, thiolated chitosan, xanthan gum and
guar gum are the polymers used to prepare gels that helps in site
specific delivery [164]. Aderibgbe et al. encapsulated curcumin and
4-aminoquinoline into gum acacia-based hydrogels that revealed
sustained and prolonged release of curcumin [165]. The hydrogels
have good swelling capability, biodegradability and pH sensitivity.
The release of chloroquine and curcumin from hydrogel depends on
position of drugs in network and the extent of crosslinking of the
hydrogel. The hydrogels have potential to work as a delivery system
for two antimalarial drugs that can release in different periods of time
[166]. Dawre and coworkers designed polymeric hydrogels of
artemether-lumefantrine by using poly(lactic-glycolic acid). These
systems can be administered by intramuscular route. The outcomes of
drug release studies were their sustained and controlled drug release
profiles. These formulations have potency to cure and eradicate
malaria without signs of relapse [167].

Nano-and Microcapsules

Polymeric capsules have been known to entrap the therapeutic agents
between core and a protective shell [167] by different methods like
self-assembly of block copolymers, monoemulsion polymerization and
solidification of droplet shell, etc. [168]. The polymeric capsules are
classified into two groups on the basis of their dimension i.e.
nanocapsules and microcapsules [169]. They revealed different
advantages like enhanced drug bioavailability, controlled and
continued drug release profile, biodegradability, high drug-loading
capacity and reduced drug toxicity [167]. Velasques et al.
incorporated curcumin and quinine in nanosized polymer capsules
using polysorbate as the polymer. The outcomes of in vitro evaluation
studies revealed reduced toxicity and demonstrated its potential
against P. falciparum [170].

Polymeric nanoparticles

Polymeric nanoparticles have augmented the efficiency of
antimicrobial agents by increasing the cellular uptake of therapeutic
agents. They are highly biocompatible and biodegradable, and have
the ability to disperse from the intracellular membranes [171]. These
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nanoparticles have different advantages like improved drug solubility,
bioavailability, high biocompatibility and enhanced safety and
efficiency of therapeutic products. Polar polymer-conjugated amino
chloroquine has shown more efficacy against chloroquine susceptible
strains of P. falciparum [166]. Polymeric nanoparticles loaded
curcumin-artesunate and poly D,L-lactic-co-glycolic acid by solvent
evaporation method have shown amplified efficacy against P.
berghei-infected Swiss mice with restricted lethal effects [172].
Jawahar et al. designed chloroquine and azithromycin loaded
polymeric nanoparticles for combination therapy of malaria for their
antiplasmodial efficacy [173]. Anand et al. encapsulated doxorubicin
and artemisinin in f-cyclodextrin polymer nanoparticles. These
nanoparticles have improved drug bioavailability with sustained and
regulated drug release [174]. Oyeyemi and coworkers prepared
artesunate and curcumin loaded polymeric nanoparticles by single
emulsion method for the targeted delivery of drugs against the
parasite schizonts in liver or spleen. The formulation has shown its
efficacy in low concentration against malaria parasites [172].

Nanotechnology based vaccines

Numerous research organizations have worked to invent new vaccines
to target malaria. WHO provided a list that includes the name of
malaria vaccines or its constituents that are under continuous
preclinical or clinical phase [175]. To improve the immunological
response against malaria parasite, recombinant vaccines have been
formulated with one or more peculiar antigens. Mosquirix vaccine is
the first licensed vaccine to target malaria that gets approval of
European regulators in July 2015. The outcomes of clinical trials
evidenced its safety and efficacy [176]. In this vaccine, the S-antigen
of hepatitis B virus was fused with C-terminal of P. falciparum
circumsporozoite protein, and the N-acetylneuraminic acid
phosphatase. The liposomal form of vaccine has shown improved
immune results [177]. Nanoparticles induced the protective immunity
by targeted delivery and by improving the cellular uptake by immune
cells [178]. Merozoite surface proteins loaded with polystyrene
nanoparticles have provided sensible protection against parasites in
blood stage [179]. A liposomal form of vaccine has been found to be
more effective than conventional form. They can induce development
of more antibody and T-cell responses by eliciting major
histocompatibility complex (MHC) I and MHC II pathways. The
development strategies of malaria vaccine need regular improvement
due to resistance problem of recombinant antigens.

Green nanotechnology panorama towards malaria

Green nanotechnology has been integrated to invent safe and
ecological nanocomplexes that fight against the obstacles distressing
the human fitness or atmosphere [180]. Andrographis paniculata Nees
encapsulated silver nanoparticles were synthesized by green
nanotechnology that has shown anti-plasmodial effect against P.
falciparum. Silver nanoparticles encapsulated extracts from the leaves
of Neem and Ashoka have ability to restrain Plasmodium parasites
[181]. In vitro study of silver nanoparticles containing Catharanthus
roseus have demonstrated their anti-plasmodial potential [182]. Zinc
oxide nanoparticles entrapped aqueous peel decoction of Lagenaria
siceraria were found to inhibit the hemozoin formation, which is
mandatory for the survival of Plasmodium parasite [183].

Other potential targets

Natural and herbal medicinal products represent a potential target in
the treatment and prevention of malaria. Traditionally, the herbal
drugs have structured the backbone for the treatment and prevention
of malaria over many generations. As, herbal drugs are considered
safe, they have been well accepted by many generations against fatal
diseases [184, 185]. Numerous in vitro studies have confirmed the
antimalarial potential of stem, root, leaf and fruit extracts role of
various herbal plans like Vernonia amygdalina, Gynostemma
pentaphyllum, Moringa oleifera, Cryptolepis sanguinolenta, Balanites
aegyptiaca, Aloe camperi, Morinda morindiodes, Carica papaya,
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Azadirachta indica, Ageratum conyzoides, Uvaria chamae, Khaya
grandifolia and Telfaria occidentalison [185-187]. Furthermore, some
ayurvedic preparations and formulations have shown promising
results in the treatment and prevention of malaria. The Central
Council for Research in Ayurvedic Sciences (CCRAS) developed an
ayurvedic formulation called AYUSH-64, which is a combination of
four ayurvedic drugs namely Alstonia scholaris, Picrorhiza kurroa,
Swertia chirata and Caesalpinia crista. The formulation showed potent
antimalarial effect in an experimental model against P. berghei and P.
yoelii nigeriensis in Swiss mice [188, 189]. In addition, few
preparations and formulations like Bisam-jwar-har-lauh and
Malaria-samharak-vati, have shown promising potential for the
treatment and management of malarial fever [190]. The herbal
formulations have been considered resourceful in the production of
protein drugs by virtue of introduction of genetic engineering
technology like molecular .farming in the recent times [191].

Future prospectives

Nanocarriers and green nanotechnology have great future in
medicinal industries. The producers of antimalarials would now band
up with progression of nanotechnology, but the panorama of the
industry will be based on the encroachment in technologies made by
omics sciences. They will get benefits in assessing the biological
reaction at the cellular and tissue levels against the bioactive
compounds and specific antimalarial formulations by using machine
learning approaches with big data analysis. This scenario is
well-equipped with the concept of precautionary or remedial effect of
products. There has been regular endeavor for the radical treatment of
malaria. Drug resistance is the biggest difficult hurdle against the
success of antimalarial therapy. So, most of the research has to focus
in order to conquer the spread and emergence of drug resistance by
one or the other methods. There is an urgent need to develop new
drugs with new mechanism of action to overcome the problem of drug
resistance. Different methods like early cure of malaria disease with
combination therapies, emergence of antimalarial hybrid compounds,
intermittent protective treatment for pregnant ladies (IPTp), and
emergence of nanotechnological based anti-malarial therapies and
green nanotechnology will be used to cure malaria in future.

Conclusion

Malaria is a rigorous health concern around the world. Severe toxic
effects of accessible anti-malarial drugs, manifestation of
drug-resistant parasites, and lacking of suitable vector control
procedures and vaccines to treat malaria lead to failure of malaria
treatment. Numerous research associations were involved in the work
of development of new therapeutic approaches to fight against
malaria but no suitable outcomes were observed. However, for the
past two decades, the progress of nanotechnological methods has
opened the ways to develop safe and eco-friendly nanocarriers for
conventional antimalarial drugs to eradicate malaria. The emergence
of sophisticated techniques in nanotechnology like development of
hybrid compounds, introduction of green nanotechnology, invention
of site-specific nano-pores and nano-bio-circuits, the introduction of
numerous nanocarriers like solid lipid nanoparticles (SLNs),
liposomes, metallic nanoparticles, polymeric nanoparticles,
nanostructured lipid carriers (NLCs), and nanoemulsions have
explored the new ways to eradicate malaria without any severe
side-effects. The reported results like targeted drug delivery, improved
drug hydrophilicity, continued and controlled drug release, and
maintaining the drug activity in biological environment, suggested
that delivery of antimalarials in nanocarriers is a potential approach
to be explored in near future. Thus, there is an urgency to invent
additional polymer-based nanocarriers to encapsulate conventional
antimalarials. Persistent and frequent research on the nanocarriers
and hybrid compounds for the delivery of antimalarials will open the
new pathways to eradicate malaria.
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