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Abstract
Objective: Resident microorganisms live in dynamic harmony with their hosts to influence
various physical and psychological health aspects. The majority of the resident microbes are
found in the digestive tract, aka the gut of mammals. If and when perturbed, the
composition of gut microbiota could jeopardize the physiological balance or homeostasis. In
this article, we aim to establish how different diseases could be accompanied by notable
changes in gut microbial composition and lend insight into microbial regulation of health.
Methods: Literature search was done in PubMed using relevant keywords and summarized
in tabular form as well as in narration. Results: We try to focus on the concept of microbial
and metabolite biomarkers for diseases. We also try to capture the renewed perspective of
good and harmful microorganisms in the context of host health. We have presented a
comparative network analysis of microbial roles in select diseases. Recent findings also
suggested that the growth of some traditionally disease-causing pathogenic microorganisms
promotes health in other human communities. We have listed major taxa of gut microbes in
communities worldwide, which signifies that gut microbiota can be healthy or harmful
depending on the urbanization and ethnicity of the hosts. The traditional and current schools
of thoughts are both limited by the technology of metagenomic studies; we have elucidated
some of their shortcomings. Conclusion: Research in the field of gut microbiota must take
into account the different populations and the changing narrative of healthy and harmful
microbes.

Keywords: diseases and biomarkers, glitches of metagenomic approaches, gut microbiota,
metabolic profiles, urbanised and traditional gut microbiota
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Introduction

The Singapore summit of 2018 was an important event for many
reasons. Still, one bewildering and recurring headline that interested
the hoi polloi was that the North Korean leader carried with him his
toilet. Amidst wild speculation, the actual reason for this measure was
that nobody could have a chance to know the health status of the
leader. One might wonder how much information can even be
obtained from his fecal material, and the answer was enough for it to
be a national security concern. The feces are more living than waste;
the microbiome of the fecal samples can give away a lot about the
host’s immune, and systemic metabolic status [1].
Today, we know that gut microbiota encompasses 316 million

genes, spanning over 25 phyla, with 2,000 genera and 5,000 species
[2, 3]. Despite the growing ease of metagenome mapping, 20% of
sequences do not match any known microbial genomes, indicating
hidden taxa and unknown diversity. Of the total, 40% of sequences are
not available in any functional databases, so there is a substantial gap
in our understanding of the role of the microbiome, even if extensive
research pours in from every corner of the world [4].
Not only inside the gut, but microbes are also found throughout the

human body, mainly on the external and internal surfaces, including
the skin, saliva, oral mucosa, and conjunctiva. Bacteria
overwhelmingly outnumber eukaryotes and archaea in the human
microbiome by 2–3 orders of magnitude [5]. The vast majority of the
bacteria reside in the gut, more specifically in the colon, with an
estimate of about 1014 bacteria, followed by the skin, which is
estimated to be home to ~1012 bacteria [6].
A mother’s first gift to the newborn is a healthy smattering of

microbes [7]. Most microbes are acquired during passage through the
birth canal, while some are via breastfeeding and skin-to-skin contact
[8]. This means that if the baby is delivered by cesarean section, they
might miss out on a valuable maternal bacterial starter kit [9, 10].
Because a child’s earliest years generally establish the composition of
a gut community that may persist throughout adulthood, the resulting
disruptions can have serious long-term health consequences [11, 12].
The gut microflora has more profound effects on the host’s a)
anatomical, b) physiological, and c) immunological development than
microflora of other body parts [13-15].
The infant’s gut microbiota undergoes a succession of changes

correlated with a shift in feeding mode from breast or formula-feeding
to weaning and the introduction of solid food [16]. Despite the
relative similarities of the gut microbiota in mothers and their
offspring, microbial succession in the gut is also influenced by
numerous external, internal, and other host-related factors. External
factors include the microbial load of the immediate environment, the
type of food eaten, feeding habits, and the composition of the
maternal microbiota. Also, dietary and temperature-related stresses
can influence the succession of microbes. Internal factors include, but
are not limited to, intestinal pH; microbial interactions; environmental
temperature; physiological factors, such as peristalsis; bile acids; host
secretions and immune responses; drug therapy; and bacterial mucosal
receptors [17].
The large diversity, stability, resilience, and symbiotic interactions

of the gut microbiota with the host can act as a “superorganism” that
performs the host's most vital immune and metabolic functions
[18-20]. Gut bacteria are crucial regulators of critical digestion along
the gastrointestinal tract; commensal bacteria play an essential role in
the extraction, synthesis, and absorption of many nutrients and
metabolites, including bile acids, lipids, amino acids, vitamins, and
short-chain fatty acids (SCFAs). Gut microbiota has a crucial immune
function against pathogenic bacteria colonization inhibiting their
growth, consuming available nutrients, and/or producing
bacteriocins. Gut microbiota also prevents bacteria invasion by
maintaining intestinal epithelium integrity. Microorganisms prevent
pathogenic colonization by many competition processes: nutrient
metabolism, pH modification, antimicrobial peptide secretions, and
effects on signaling pathways [21].
Moreover, recent studies have identified a critical role for

commensal bacteria and their products in regulating innate and
adaptive immune cells' development, homeostasis, and function [22].
It is paradoxical to note that gut microbiota functions are highly
preserved among individuals. In contrast, each individual’s gut
microbiota is characterized by a specific combination of bacterial
species due to inter-individual and intra-individual variations
throughout human life [23].
The conventionally healthy gut microbiota, specifically gut bacteria
of a healthy human adult, comprises six significant phyla, Firmicutes,
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and
Verrucomicrobia, with the two phyla Firmicutes and Bacteroidetes
representing 90% of gut microbiota. The Firmicutes phylum comprises
more than 200 genera, such as Lactobacillus, Bacillus, Clostridium,
Enterococcus, and Ruminicoccus, while the Clostridium genus represents
95% of the Firmicutes phyla. Bacteroidetes consist of predominant
genera such as Bacteroides and Prevotella. The Actinobacteria phylum
is proportionally less abundant and mainly represented by the
Bifidobacterium genus [23, 24].
Perturbation of the constitution and functionality of the healthy gut
microbiome elevates disease risks. The adverse health outcomes,
including inflammatory bowel disease (IBD), obesity, diabetes,
cardiovascular disease, liver disease, colorectal cancer, and
neurological disorders, can be at least partially attributed to
undesirable functional alterations in the gut microbiome [25].
The gut microbiome is considered a new metabolic organ involved
in regulating host metabolism. Their composition and abundance can
be varied depending on internal factors (e.g., host genetics) and
external factors (e.g., diet, lifestyle, and drugs) [26]. The change in
gut microbiome composition has been reported to modulate the
metabolic composition of the host. Accumulating evidence has proved
that metabolites reside at the critical interface between the gut
microbiome and the host's health status [27-29]. This study enlightens
the role of microbiome and metabolites as a promising tool for disease
diagnosis and prognosis.
Current reports suggest that the term healthy or diseased gut
microbiota is undoubtedly vague in many contexts. One person’s
healthy gut microbiome might not be beneficial in another context.
Several studies have identified a stark difference between the
microbiota of urban populations and those of indigenous populations
that lead traditional agrarian or hunter-gatherer lifestyles that
resemble those of our early ancestors [30]. These differences seem to
be attributable mainly to the loss of bacterial diversity, which might
be linked to the lack of fiber in Western diets [31].
So, to define the healthy and diseased gut microbial composition
more appropriately and robustly, researchers need a comparative
larger and more global data set. Global and long-term studies would
give a better-informed starting point for broadly understanding what a
normal microbiome in a healthy individual can look like and thus
make it easier to recognize disease-linked perturbations.
However, the methodology of microbiome analysis is still a hindrance
in identifying the exact gut microbial composition of the host.
Standard methods of microbiome analysis favor the identification of
bacteria and are not as good at recognizing other common gut
microorganisms. The other major drawback of the analysis technique
is that this can detect only species up to the accuracy of genus level
while ignoring subspecies and the specific strain of the microbiota.
Hopefully, an alternative analysis technique will be a workaround
shortly [32, 33].
In this context, the current review will anticipate a vast knowledge
of a) the critical role of the gut microbiome in maintaining healthy
homeostasis, b) the perturbing factors that break the homeostasis to
cause innumerable acute diseases, c) the gut microbial composition of
traditional human races, the hunter-gatherers to break the myth of
healthy and diseased microbiota in this context, and d) last but not the
least the current glitches of the microbiome analysis.

Microbiota, a key regulator of health

Long before, Lederberg even defined the term microbiome in 2001,
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Antony van Leuwenhoek had observed the living creatures in his
sputum and fecal samples [34, 35]. He studied their diversity and
observed the difference between habitats and states of disease and
health. The human microbiome occupies various niches of the human
body. Communities of flora can be in nasal cavities, oral mucosa, on
the skin, in the gut, and inside urogenital tracts [6, 36]. They
modulate immunity and regulate hormones [37]. The skin
microbiome is part of the first barrier, protects against pathogens, and
its secretion modulates pH. Biofilms in the oral cavity help digestion
and secrete essential vitamins [38]. In the urogenital tract, the
microorganisms maintain pH and prevent diseases by various
non-specific mechanisms [39]. The microbiome residing in our gut
performs all these functions and more, making it one of our body
systems' most vital and versatile components. The diversity of the flora
in the gut modulates the immune response, neurobehavior, energy
metabolism, digestion, and absorption. The microbiome
biosynthesizes a) vitamins, b) steroid hormones, c) neurotransmitters,
and metabolizes a) amino acids, b) bile salts, c) drugs, and d)
xenobiotics [40].
Out of the 12 phyla characterized by the Human Microbiome

Project, the four dominant phyla in the gut of a healthy individual,
i.e., i) Bacteroidetes, ii) Firmicutes, iii) Actinobacteria, and iv)
Proteobacteria and their metabolic products modulate the systemic
homeostasis of the host in various ways [41]. They influence a)
immune maturation, b) host cell proliferation, c) vascularization, and
d) pathogen burden, along with bone density, energy biogenesis, and
intestinal endocrine function [42, 43].
The microbiome communities differ by the location of localization

and the organism's condition. Limitations to culturing a majority of
commensal microbes still hinder our understanding of their
functioning [44].
There are multiple ways in which microbiota influence different

systems.

Gut microbiota and immune crosstalk
The gut is home to an alarming proportion of immune responding
cells. Such proximity to the microorganisms in our body cannot be a
coincidence. In the same way, it is not a coincidence that the critical
window of gut microbiome colonization for infants is the same time
duration in which babies are highly susceptible to infectious diseases.
An elegant study elucidating the difference in the development of
gut-associated lymphoid tissue in germ-free and specifically colonized
mice solidified the hypothesis that microbiome diversity modulates
the first line of defense of the host gut [45]. Immune cells can be
primed under the condition of commensal activation, aided by SCFAs,
which also modulate the production of cytokines [46]. The
co-evolution of microbial diversity with the host system maintains the
balance between the commensals of the gut and the host immune
system [47]. The members of the gut microbiota then modulate the
host's immunological state and response, among other things. Recent
literature indicates that microbial colonization determines Th1/Th2
bias in mice, with specific phyla of bacteria instrumental in producing
Th1 response [48]. The gut microbiota also forms a line of defense by
competing with infectious pathogens for resources and exerting
antimicrobial action through different immune cells [49]. Resident
microbiota of the gut promotes the production of antimicrobial
peptides: leptin, and defensins using pattern recognition receptors
mediated mechanism [50, 51].
Whether a microorganism promotes, triggers, or protects against

disease is highly contextual, depending on the host’s immune
activation, the region where the microbiota is localized, and the host’s
genetic landscape [43]. Evolution and modulation of environmental
and pathological hosts need to cultivate fine-tuning among
host-microbial interactions over time [52]. In the recent few decades,
the increased use of antibiotics, drastic shift in diet and lifestyle, and
almost total eradication of nematode infection in significant parts of
developed nations have resulted in a sharp increase in autoimmune
and inflammatory diseases, a result of a disrupted balance between
the microbiome and host immunity [53, 54]. In a balanced, healthy

microbial composition, the commensals combat the pathogens either
in competition for nutrients or directly influencing the pathogenicity
of the virulent by secretion of antimicrobial metabolites [51].
Commensals also trigger T and B lymphocytes against pathogens,
promoting inflammation and autoimmune disorders when not under
control [55, 56].

Brain and behavior
The gut microbiome weighs as much as a human brain and is
undoubtedly as important, if not more, as the master organ itself [57].
By integrating the hormonal and neural pathways, the gut symbionts
have established bidirectional communication with the brain, acting
along what is known as the gut-brain axis [58]. Extensive research has
uncovered numerous implications of this crosstalk between the brain
and the gut microbial composition. A few decades ago, scientists
solidified the connection between bacterial colonies and behavioral
disorders when they observed that oral antibiotics directly alleviate
the symptoms of encephalopathy [59, 60]. Since then, dysbiosis has
been included as a symptom of neurobehavioral disorders. Systematic
studies have cropped up characterizing the diverse states of microbial
compositions at different disease stages. Probiotics and prebiotic
treatments are increasingly considered a therapy to reduce stress and
mood disorders [61]. Stress response in germ-free mice is more
intense than in gut colonized by microbiome [62]. Depending on
when the microbiota is restored, anxiety levels stagger to normal,
indicating that microbiota controls neural response development and
plasticity [63]. There is more than enough evidence to conclude that
microbial composition in the gut and an individual's behavior are a
product of one another. Years ago, a seminal study showing that
Bifidobacteria infantis plays a vital role in metabolizing tryptophan
proved that the gut microbiota directly challenges and controls the
neurotransmitter quantity and action in the brain [64]. Tryptophan is
the precursor for many important neurotransmitters implicated in
mood disorders, and microbial endocrinology studies have since
shown that gut commensals did indeed produce their
neurotransmitters [65]. This discovery forced onto the field a new
perspective. Not only did the microbial composition dictate changes in
mood as a downstream effect, but it was actively producing the very
molecules whose activity determined the person's behavior. The next
obvious question was if the neurotransmitters were produced in the
gut, how were they transported? The answer lay in a string of vagus
nerve-centric research, in which the nerve was stimulated or dissected
out in germ-free mice to conclusively lay the foundation for gut-brain
axis communication [66].
While vagus nerve innervation connects the microbial effects to the
central nervous system, the enteric nervous system is also receptive to
microbial metabolites and their concentrations [67]. Another crucial
effector is the hypothalamic-pituitary-adrenal axis for stress response
[68]. The cortisol produced as a result of activation of this axis
modulates the action of intestinal cells, which are directly in contact
with and under the control of the microbiome [58, 69]. Specific
colonization of the bacteria resulted in altered expressions of genes
involved in stress response in different brain regions [70]. While
studies like these are plentiful, still more requires understanding the
exact mechanisms behind the effect of specific microorganisms, their
metabolite products, and their downstream effects.

Digestion and metabolism
Bifidobacteria are supposedly the first phylum of bacteria to be
colonized in the infant's gut, believed to be passed down from the
mother’s breastmilk [71]. It is essential because it aids in the digestion
of the milk's sugars [72]. Polysaccharides, a complex sugar, have their
complexity compounded by the array of multiple bonds they can form
between themselves, resulting in the need for a similarly diverse set of
enzymes to help in their breakdown [73]. The gut does provide for
this, but the enzymes are not all humanely synthesized [74]. A large
chunk of the proteins is contained in the symbionts' genomes that
reside in our gut lumen [75]. Even after the complexity of the
digestion process is overcome, the gut microbiome plays a still
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important role in converting carbohydrates to energy, effectively
bypassing specific consuming pathways [76]. Features like these make
them invaluable to the process of primary degradation in the
intestines. In the absence of any gut microbiota, we observe increased
autophagy in the intestinal cells, as a response to nutrient stress.
Supplementing with microbially digested metabolites rescues the
germ-free mice from the energy deficit and autophagy [77].
Pyruvate formed during the catabolic processes is converted to

intermediates. But surprisingly, only trace amounts of these
intermediates are found in fecal samples. This decreased
concentration is mainly because the commensals metabolize those
molecules to produce short-chain fatty acids [78]. This SCFA is
essential to fuel the body’s total caloric use and has many other
effects, as elucidated below [79]. Specific steps of these SCFA
productions may result in undesirable byproducts, which are again
consumed by microorganisms in the gut [80]. This cross-feeding is
essential to maintain the process's kinetics and save the cells from
toxic effects [81].
Actinobacteria and bacteroidetes primarily break down the dietary

carbohydrates and human milk oligosaccharides (HMO) into acetate
and trace amounts of succinate and propionate. Firmicutes are
dedicated principally to cross-feeding the byproducts and the
production of SCFA. Different species metabolize the intermediates to
other end products, which are metabolized by their sister species.
Proteobacteria digest dietary proteins, which are especially rich in
sulfur-containing amino acids, which are metabolized further as part
of the sulfur detoxification process in the gut. Many species of

Bacteroidetes metabolize aromatic amino acids to indoles which play
a major role in intestinal gut barrier integrity maintenance [80].

Gut microbiota and metabolism
The importance of gut microbiota was initially shown in decades-old
studies. Different metabolic disorders were characterized by distinctly
different microbial populations [82]. By studying the action of
short-chain fatty acids, the metabolized end products of gut
microbiota, we are a little closer to understanding the effect of said
microorganisms on the host's metabolism. Butyrate and propionate
induce gut peptides that decrease food intake and increase satiety
[83]. Acetate and propionate have antagonistic effects on adipose
tissue function, e.g., acetate promotes lipogenesis, and propionate
inhibits it [84].
The advancement of omics studies has generated rich omics data
revealing the involvement of the microbial community in host disease
pathogenesis through interactions with their host at a metabolic level.
Metabolic dysregulation caused by the microbiome is believed to
contribute to the development of gastrointestinal diseases like IBD,
metabolic diseases such as type 2 diabetes, obesity, neuropsychiatric
diseases like autism, and various chronic inflammatory diseases such
as Lupus [27]. In addition, the diseases caused by gut microbial
dysbiosis have a significant effect on the systemic level of the host.
The gut microbial composition of the host at various diseased states is
enlisted in Table 1 and Figure 1. We also enlisted (Table 1) the
diseases whose pathogenicity triggers the development of other
systemic disorders of the host.

Table 1 Microbial signatures of gut dysbiosis related diseases in human
Category Disease Increased taxa Decreased taxa Related other diseases References
Gastrointestinal IBS Veillonella, Streptococci,

Ruminococcus,
Enterobacteriaceae,
Lachnospiraceae,
Escherichia coli,

Lactobacilli,
Faecalibacterium,
Bifidobacteria, Collinsella,
Clostridium leptum

Anxiety, depression [115–117]

IBD Ruminococcus gnavus, E coli,
Fusobacterium, Bacteroidetes
fragilis

Faecalibacterium
prausnitzii,
Lachnospiraceae,
Bifidobacterium,
Roseburia hominis

Anxiety, obesity, celiac
disease

[118–123]

Celiac’s disease Bacteroides - Prevotella, E.
coli

Bifidobacterium,
Clostridium histolyticum,
C. lituseburense,
and Faecalibacterium
prausnitzii, Lactobacillus

IBD, diabetes (type 1),
rheumatoid arthritis,
Crohn’s

[124–128]

Metabolic Obesity Ruminococcaceae,
Rikenellaceae,
Desulfovibrionaceae

Akkermansia muciniphila Diabetes, depression,
IBS

[129–133]

Diabetes (Type 2) Desulfovibrionaceae,
Clostridium, Bacteroides
caccae, Akkermansia
muciniphila

Roseburia,
Faecalibacterium
prausnitzii

Obesity [134, 135]

Hypertension Eggerthella, B. plebeius,
Akkermansia

Roseburia,
Faecalibacterium

Diabetes, obesity, IBD [136–138]

Neuropsychiatric Autism Lactobacillus, Clostridium,
Bacteroidetes, Desulfovibrio,
Caloramator, Sutterella,
Sarcina

Bifidobacterium,
Akkermansia muciniphila

IBS [139–141]

Depression Oscillibacter, Parabacteroide,
Klebsiella, Paraprevotella,
Veillonella, Desulfovibrio,
Parasutterella, Paraprevotella

Coprococcus,
Lactobacillus,
Escherichia/Shigella,
Clostridium XlVa,
Dialister, Howardella,
Pyramidobacter, Sutterella

IBS, obesity [142, 143]
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Table 1 Microbial signatures of gut dysbiosis related diseases in human (Continued)
Category Disease Increased taxa Decreased taxa Related other diseases References
Neuropsychiatric Alzheimer’s Escherichia/Shigella E. rectale, Bifidobacterium IBD, depression [144, 145]

Parkinson’s Akkermansia, Oscillo-
spira, Bacteroides

Blautia, Coprococcus, and
Roseburia

146

cancer Colorectal cancer Bacteroides fragilis,
Enterococcus,
Escherichia/Shigella,
Klebsiella, Streptococcus,
Peptostreptococcus, Dorea,
Faecalibacterium,
Fusobacterium

Roseburia,
Lachnospiraceae,
Bacteroides, Coprococcus

[147, 148]

Inflammatory Rheumatoid
arthritis

Lactobacillus salivarius,
Fretibacterium, Selemonas,
Bacilli, Collinsella (could be
causative)

Faecalibacterium
prausnitzii, Prevotella
copri, Faecalibacterium,
Blautiaccoids, and
Flavobacterium

IBD, Crohn’s, ulcerative
colitis

[149–151]

Lupus Lachnospiraceae,
Clostridiaceae, Blautia,
Ruminococcus gnavus

Bifidobacterium,
Erysipelotrichaceae,
Odoribacter, Alistipes

IBD, depression [152–154]

Diabetes (Type 1) Clostridium, Bacteroides, and
Veillonella

Lactobacillus, Bryantella,
Bifidobacterium,
Turicibacter, Blautia
coccoides/Eubacterium
rectale, Prevotella

Celiac disease,
cardiovascular disease

[125]

Uremic Chronic kidney
disease

Lachnospiraceae,
Ruminococcaceae,
RikenellaceaeII

Lactobacillaceae,
Prevotellacea

Colitis [155]

Figure 1 Donut plots of the gut microbial composition of healthy and diseased individuals at the phylum level. The ratio of a different
phylum of healthy [183] and diseased individuals are quite different from each other. Gut microbial dysbiosis is the leading cause of the following
diseases- A. IBS [184], B. IBD [185], C. Obesity [186], D. Type 2 diabetes [187], E. Hypertension [188], F. Colorectal cancer [189], G. Chronic
kidney disease [190], H. Autism [191], I. Depression [192], J. Alzheimer’s [193], K. Parkinson’s [194], L. Rheumatoid arthritis [195], M. Lupus
[196], N. Type 1 diabetes [197]. We categorized all the diseases into six different types based on the type of disease outcome.
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We categorized the microbiome dysbiosis related diseases into 6
sub-categories such as i) gastrointestinal diseases, ii) metabolic
diseases, iii) neuropsychiatric diseases, iv) inflammatory diseases, v)
cancer, and vi) uremic diseases based on the disease outcome. We
chose 5 different diseases from the six sub-categories to investigate
how the altered gut microbial composition controls the host's
metabolism, which further plays a significant role in the severity of
the disease outcomes [85, 86].
Regression and correlation analysis between the different genera of

the gut microbiome and metabolite concentration from various
disease conditions helped us find some signature microbes and
metabolites that are very much disease specific. Enrichment of the
disease-specific signature microbiota or metabolites in the host system
can be used as a unique marker for the diagnosis and prognosis of the
particular disease in the near future. In the coming section, we will
discuss some signature microbial genera and metabolites that can be
adopted as useful biomarkers for diseases.
To investigate the signature biomarkers of the diseases, we collected

the data from already published articles and reanalyzed them as per
our requirements. We predicted the biomarkers for the following
diseases- i) IBD, ii) Obesity, iii) Type 2 diabetes, iv) Autism, and v)
Lupus.

Predicted microbes-metabolites biomarkers for IBD

Inflammatory bowel disease, most commonly known as IBD, is a
disease of the human gastrointestinal tract. Dysbiosis of gut
microbiota ultimately activates flares of inflammatory reactions in the
human gut. Based on the localization of the inflammation in the gut,
IBD can be categorized into Crohn’s disease (CD), where the
inflammation use to occur in the upper GI tract, and Ulcerative colitis
(UC) is the inflammation of mainly the colon and some other portion
of the lower GI tract [87-89]. In this context, it is very important to
understand the interactions between the microbiome and metabolites
of the host that ultimately causes differential inflammatory outcomes

at different parts of the GI tract. We used the publicly available
datasets to understand the relationship between microbiome and
metabolome in IBD disease progression.
The Spearman correlation analysis of microbiome and metabolome
data revealed a strong correlation between 15 different bacterial
species with 14 discriminant metabolites in CD patients. 7 different
species, Faecalibacterium prausnitzii, Oscillospira eae, Oscillospira
guillermondii, Anaerobranca zavarzinii, Veillonella montpellierensis,
Ruminococcus albus and Alkaliphilus crotonatoxidans belonging to the
Firmicutes phylum, 4 species, Desulphonauticus Autotrophicus, Serratia
entomophila, Escherichia albertii, and Candidatus Endobugula sertula to
the Proteobacteria phylum, another 3 species, Dysgonomonas
wimpennyi, Rikenella microfusus, and Parabacteroides johnsonii to the
Bacteroidetes phylum and finally only one, Bifidobacterium adolescentis
to the Actinobacteria phylum showed a strong association with
different metabolites level of CD patients. More specifically, a strong
correlation was seen between species Oscillospira eae with the
metabolites 5β-coprostanol, 3-methyladipic acid, citric acid,
methylamine, 2-hydroxy-3-methylvaleric acid, PC (16:0/3:1) and
urobilin; species Oscillospira guillermondii showed correlation with
5β-coprostanol, methylamine, and PC (16:0/3:1); species
Desulphonauticus autotrophicus was associated with 5β-coprostanol,
3-methyladipic acid, citric acid, methylamine, and PC (16:0/3:1)
putrescine and cadaverine production and finally, the abundance of
Faecalibacterium prausnitzii was correlated with the metabolite
phenylethylamine (Figure 2A, B; Supplementary 1) [90-92].
Evaluating the bacterial species and metabolites relationship in UC
patients revealed strong correlations between Pedobacter
kwangyangensisvs and Dysgonomonas wimpennyi with 3-methyladipic
acid, 5ß-Coprostanol, 2-hydroxy-3-methylvaleric acid, citric acid, and
methylamine and TMAO. 3-methyladipic acid and production also
correlated with the species Akkermansia muciniphila and species
Alkaliphilus crotonatoxidans, respectively (Figure 2A, C; Supplementary
1) [90-92].

Figure 2 Global correlation of the altered microbiome and metabolomic profile of IBD. Here we depicted the altered gut microbial and
metabolic changes due to IBD. We tried to establish a correlation between disease related microbial and metabolic composition to get an idea which
particular genus is responsible for what kind of metabolic changes. Panel (A) demonstrates the IBD-related gut microbial changes of the host at the
phylum level, and the also the correlation (Spearman) between altered gut microbiota and altered metabolism of the host due to Crohn’s disease
(CD) (B) and Ulcerative colitis (UC) (C).
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Predicted microbes-metabolite biomarkers for the metabolic
disorders

Obesity
Obesity or overweight is a global problem of the current century. The
situation is like that; 1 in every 5 persons is considered obese in the
present scenario. Numerous comorbidities are associated with obesity,
reduced life expectancy, and increased mortality. In this situation, it is
necessary to investigate some disease-associated biomarkers for the
early diagnosis of the disease. As obesity is a metabolic disorder, it is
best to find some metabolic biomarkers and the producers of the
metabolites, i.e., mainly gut microbes.
Reanalysis of various public data set showed that genera

Coprococcus, Desulfovibrio, and Ruminoclostridium were strongly
correlated with butyrate and trimethylamine productions,
Erysipelotrichaceae and Butyricimonas were associated with arabinose
production, and Ruminococcaceae and Erysipelotrichaceae were related
with galactose production (Figure 3A, C; Supplementary 1) [93, 94].
The strong association between the mentioned genera and metabolites
with obesity provides us enough confidence to use them as promising
biomarkers for the disease.

Type 2 diabetes (T2D)
Type 2 diabetes is another global burden for the healthcare system.
This is also a metabolic disorder and is highly associated with the
occurrence of obesity.
Available evidence showed that the gut microbiota and metabolic

content were significantly altered in T2D patients. The short-chain
fatty acids (SCFAs) and some SCFA-producing bacteria were also
remarkably changed, such as diacylglycerol.
Genera Prevotella and Prevotellaceae UCG-003 in Bacteroidetes and

genera Streptococcus, Weissella, Veillonella, Pseudobutyrivibrio in
Firmicutes were correlated with metabolites linolenic acid and LPC
(18:2). Families Lachnospiraceae and Ruminococcaceae were
associated with the production of acetate and LPC (18:2). On the other
hand, the concentrations of bile acids (cholic acid,
glycoursodeoxycholic acid, chenodeoxyglycocholate, and glycocholic
acid) and SCFAs (acetate, propionate, and butyrate) were correlated
with families of Lachnospiraceae, Ruminococcaceae, Planococcaceae,
and Prevotellaceae, etc. Genera of Lachnospiraceae and
Ruminococcaceae families were also correlated with the production of
lipids and bile acids (Figure 3B, D; Supplementary 1) [95-97]. So the
mentioned microbes and metabolites are suitable resources and
promising biomarkers in the future for the detection of T2D.

Predicted microbes-metabolites biomarkers for neuropsychiatric
disorder- Autism

Autism or autism spectrum disorders (ASD) are a clinically and
genetically heterogeneous group of neurodevelopmental disorders
characterized by socio-communicative difficulties as well as repetitive
and restrictive behaviors. Researchers noticed that a large proportion
of autism subjects have gastrointestinal dysfunctions, with diarrhoea,
constipation, and abdominal pain as the most common symptoms. It
has also been noticed that autism patients have altered gut microbial
and metabolic profile.
Available reports suggested that 6 microbial genera of the gut and

16 different metabolites are strongly associated with the disease
progression. The abundance of the microbial genera and metabolites
were also very nicely correlated with each other. Data suggested that
the genus Lactobacilli was correlated with the production of the
metabolites fumarate, acetate, leucine, ethanol, isoleucine,
phenylalanine, alanine, Akkermansia was associated with leucine,
methionine, alanine, ethanol production, Bifidobacteria showed
correlation with metabolites acetate, leucine, isoleucine,

phenylalanine, orotate, alanine, tyrosine, uridine, methionine,
1,3-dihydroxyacetone, Bacteroides was responsible for the production
of leucine, isoleucine, alanine, fucose, uridine, the abundance of
Prevotella was correlated with propionate, fumarate,
N-methylhydantoin and finally genera Suttrella had a strong
association with metabolites acetate, leucine, alanine, fucose,
isoleucine, phenylalanine, tyrosine, aspartate, fucose, ethanol (Figure
4A, C; Supplementary 1) [98]. So these 6 genera and their associated
16 metabolites could act as promising biomarkers for the diagnosis of
autism at an early stage.

Predicted microbes-metabolites biomarkers for inflammatory
disorder- Lupus

Systemic lupus erythematosus (SLE) or lupus is a multifactorial
autoimmune disease that can cause damage to many organs and has a
global prevalence. The manifestations of lupus are very diverse and
are related to immune system defects and subsequent systemic
inflammation. Gut microbes play a remarkable role in maintaining the
immune homeostasis of the host. As lupus is an immunological
disorder, there is a high chance of altering the gut microbial
composition of the lupus patients. The altered gut microbial profile is
also related to the host's altered metabolic profile.
Previous correlation data of gut microbiome at genus level and
altered lipids concentrations showed a strong association with the
lupus pathogenicity. The majority of the bacteria that were correlated
with altered lipid levels belong to the Firmicutes phylum. In this
phylum, Lactobacillales, and Erysipelotrichales, Clostridiales are the taxa
accounting for the effective correlations with disease progressions.
Other phyla, including Bacteroidetes, Actinobacteria, Fusobacteria,
Proteobacteria, and Tenericutes, were also correlated to the lipids.
Proteobacteria, which contains various pathogens, including
Escherichia- Shigella, and Sutterella, were also related to altered lipid
levels. The lipids, significantly correlated with the disease were
mainly bile acids (deoxycholic acid, glycocholic acid,
isohyodeoxycholic acid) and arachidonic acid (Figure 4B, D;
Supplementary 1) [99]. Altered lipid metabolism and a high
abundance of the mentioned genera could be used as suitable
diagnostics tools in the coming days.
Gut microbial alteration can potentially change the host's healthy
homeostasis at the systemic level, which ultimately causes multiple
health issues simultaneously. So the diseases caused by microbial
dysbiosis are interconnected regarding gut microbial composition and
host metabolic changes. In this current study, we tried to discover the
diseases caused by microbial dysbiosis and share similar changes in
microbial and metabolic composition and diversity.
Reanalysis of the public datasets of different diseases showed that
the microbial and metabolic composition of type 2 diabetes patients
has the highest similarities with other diseases like obesity, autism,
and lupus. We tried to shortlist some common metabolic biomarkers
for microbially and metabolically connected diseases. For example,
drastic changes in butyrate level can be a signal of either obesity or
type 2 diabetes or both. Similarly, changes in propionate and acetate
can be the marker for autism and type 2 diabetes, glycocholic acid,
and cholic acid as the marker for lupus and type 2 diabetes, and
changes in phenylalanine levels can be promising markers for IBD,
autism, or both (Figure 5; Supplementary 1). We further performed a
predicted network analysis of microbes and metabolites with the
diseases that share common metabolic biomarkers (Figure 6). The
predicted microbial-metabolic network can be used as a propitious
tool for disease diagnosis.
The concept of a healthy and diseased microbiome is not universal.
The advancement of microbiome research shatters the concept of
healthy gut microbiota. We will be highlighting this in the next section
of the article.
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Figure 3 Global correlation of the altered microbiome and metabolomic profile of obesity and type 2 diabetes. Obesity and type 2 diabetes
related microbial and metabolic changes are demonstrated here. Correlation study explained the specific genus responsible for specific disease
related metabolic changes. Changes in the gut microbial composition of obese (A) and diabetic (B) hosts in phylum level and the correlation
(Spearman) between altered gut microbiota and altered metabolism of the host due to Obesity (C) and Type 2 Diabetes (D).

Figure 4 Global correlation of the altered microbiome and metabolomic profile of Autism and Lupus. Autism and Lupus related microbial
and metabolic changes are demonstrated here. Correlation study explained the specific genus responsible for specific disease related metabolic
changes. Phylum level composition of altered gut microbiota of Autism (A) and Lupus (B) affected host and the correlation (Spearman) between
altered gut microbiota and altered metabolism of the host due to Autism (C) and Lupus (D).
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Figure 5 Venn diagram of unique and common microbes and metabolites among various diseased conditions. Different gut microbiota
related diseases share can share certainly similar gut microbial and metabolic composition. In this figure we tried to figure out the number of
common and unique microbial and metabolic composition across various diseased conditions. (A) represents the common and unique microbes
present in the gut under different diseased conditions; (B) describes the common and unique metabolites compositions under various diseased
conditions.

Figure 6 A predictive model of affected metabolites in various diseased conditions based on their gut microbial composition and
inter-relation between different diseases in terms of microbiota and metabolism. From microbial and metabolic correlation data, we sorted
the diseases which are interrelated gut microbially and metabolically and predicted some similar microbial and metabolic changes between Type 2
diabetes (T2D) and (A) Obesity (B) Autism (C) Lupus and in between Autism and IBD (D).
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The myth of a healthy gut microbiome

Nowadays, microbiome ecologists grapple with a significant problem
in defining the healthy microbiome, especially the gut microbiome.
The vast diversities in human genetic composition, dietary habits, and
geographic distribution worldwide add more complexity to
understanding the healthy gut microbiome. Archiving the healthy and
diseased gut microbiome is mainly done based on research in western
and developed countries. The traditional definition of a healthy gut
microbiome becomes vague when research crosses the boundary of
the westernized developed countries.

Racial influences on gut microbial compositions
The Human Microbiome Project first investigated whether differences
in microbiome ecology and health-related outcomes are associated
with ethnic, racial, and national categories, such as Black, White,
Asian, Mexican, and Puerto Rican or not. One of their project reports
concludes that “ethnic/racial background proved to be one of the
strongest associations” of metabolic pathways and microbes with
clinical metadata [100, 101].
The concept of ‘race’ emerges in human microbiome ecology as

‘biosocial race’ in which the socio-cultural diversity in human groups
is taken to induce differences in health-related biological traits in
these groups. Whereas the biological component of race, basically the
difference in microbial characteristics of groups, has some degree of

autonomy from social factors, as it also depends on the host’s genome
and can be transmitted through biological inheritance channels [100].
Presently researchers have focused on different explanatory
interests regarding the differential microbial composition of different
races. One set of investigations focuses on developing interventions for
traditional, indigenous, or non-western populations with seemingly
high disease susceptibilities. The targeted study populations include
post-colonial areas outside Europe and North America [102, 103]. The
second group of studies explained, the reason behind the
‘impoverished western microbiome’. The subtending assumption of
these studies focuses on the evolution of the human microbiome; the
diversity of microbial species decreased when human ‘civilizations’
passed from foraging and rural farming to urban and industrialized
western lifestyle that includes the overuse of antibiotics and high-fat
diets [104-106].
In recent days, race or ethnicity studies on human microbiomes
related to the Latin American tribal population have been a rapidly
growing area. Researchers identified the indigenous non-westernized
microbiomes of healthy ethnic individuals [100, 101, 107].
Surprisingly the results indicate that most of the healthy gut
microflora of the ethnic populations are the major disease causing
factor for the civilized population. For a better understanding of the
above mentioned fact, we have mentioned the gut microbial
composition of ethnic human races and their food habits in detail in
Table 2.

Table 2 Global distribution of various ethnic human races, their food habits, gut microbial composition, and the traditional disease-causing
taxa, which are very much indigenous for ethnic human community
Community Dietary composition Major taxa of the gut

microbiome
Traditionally unhealthy taxa References

Hadza
Hunter-gatherers of
Tanzania

Meat (Dik-dik, Giraffe, Galago,
Bee larvae), Honey, Baobab,
Berries, and Tubers

Prevotella, Eubacterium,
Oscillibacter, Butyricicoccus,
Sporobacter, Succinivibrio and
Treponema

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Succinovibrio- Malnutrition

[156–159]

Yanomami
Hunter-gatherers of
Amazon

Snakes, Wild Pigs, Monkeys,
Deer, Jaguars, Insects, Larvae,
Fish, Crabs, Wild Honey,
Roots, Palm fruits

Escherichia, Klebsiella,
Ralstonia, Neisseria,
Desulfovibrio, Cutibacterium
Akkermansia, Treponema,
Brachyspira

Brachyspira- IBS, Diarrhoea
Ralstonia- Cause chronic kidney disease
in colitis patients

[160–162]

Papua New Guineans
Rural Population

Sweet potato, Plantain,
Cassava, Rice, Sago, Taro,
Banana, Yam, Pumpkin,
Kumu, Beans, Tulip, nuts,
Coconut, Pitpit, Mango, Meat
(Fresh Fish, Chicken, Lamb,
Cassowary, Bandicoot)

Prevotella, Bifidobacterium,
Slackia, Propionibacterium,
Streptococcus, Staphylococcus,
Eubacterium,
Erysipelotrichaceae,
Clostridium senso stricto,
Sarcina, Enterococcus,
Lactobacillus

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Erysipelotrichaceae- Obesity

[157, 158,
163–165]

Bassa Population of
Nigeria

Tubers (Yams, Cassava),
Grains (Guinea Corn, Millet,
Maize), Fruit (Banana,
Mango), Fermented
Maize-Millet-Sorghum, Soups
(e.g., Ayoyo from Corchorus
Leaves and Kuka from Leaves
of Adansonia Digitata), Soup
Condiments (Okra, Melon),
Fish, Very rarely meat (Goats,
Chicken)

Prevotella, other
Bacteroidales members
(including Prevotella and an
unknown S24-7 genus),
Bulleidia, Eubacterium,
Cetobacterium, Succinivibrio,
and unclassified
Peptostreptococcacea,
Phascolarctobacterium,
Treponema, Ruminobacter,
Butyrivibrio

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Succinovibrio- Malnutrition
Peptostreptococcacea- Non-alcoholic fatty
liver disease

[157–159,
166, 167]

Fulani Nomadic of
Nigeria

Raw and Cooked Milk,
Fermented Milk, Local herbs,
Maize, Millet, Yam, Rice,
Cabbage, Bitter leaf

Prevotella 9, Clostridium sensu
stricto 1, Faecalibacterium,
Eubacterium rectale group,
Campylobacter, Prevotella 2

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Eubacterium rectale- Induce colitis and
colorectal cancer
Campylobacter- Foodborne enterocolitis

[157, 158,
168–170]

Malawi Tribes of East
Africa

Corn, Cassava, Fish, Egg,
Meat, Chicken, Fruit (Sugar
cane, other fruit juices),
Crackers, Yogurt, Cheese milk,
Mayonnaise, Coffee

Prevotella, Dialister,
Succinivibrio

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Dialister- Osteoporosis
Succinovibrio- Malnutrition

[157–159,
171, 172]
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Table 2 Global distribution of various ethnic human races, their food habits, gut microbial composition, and the traditional disease-causing
taxa, which are very much indigenous for ethnic human community (Continued)
Community Dietary composition Major taxa of the gut

microbiome
Traditionally unhealthy taxa References

Amerindians Tribe of
Guyana

Corn, Cassava, Fish, Egg,
Meat, Chicken, Fruit (Sugar
cane, other fruit juices),
Crackers, Yogurt, Cheese milk,
Mayonnaise, Coffee

Prevotella, Bacteroidales,
Dialister, Succinivibrio

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Dialister- Osteoporosis
Succinovibrio- Malnutrition

[157–159,
171, 172]

BaAka Rainforest
Hunter-gatherers of
Central Africa

Gozo, Bitter manioc leaves,
Koko leaves, Peanut sauce,
Blue Duiker meat

Prevotellaceae, Treponema,
Sutterella, Anaerovibrio, and
unclassified members of the
Clostridiaceae and
Cyanobacteria

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Sutterella- Autism spectrum disorder

[157, 158,
173, 174]

Bantu Tribes of
Central Africa

Sorghum, Maize, Millet,
Legumes, Cucurbits (Squash,
Melons), Eggs, Seasonally
available fruits, Goat, Chicken,
Fish, Cattle meat

Ruminococcaceae,
Mogibacteriaceae,
Faecalibacterium,
Leuconostoc, Lactococcus,
Christenellaceae, Dialister

Ruminococcus- Autism spectrum disorder
Dialister- Osteoporosis

[172–174]

Tribes of Botswana Sorghum, Maize, Millet, Corn,
Legumes, Cucurbits (Squash,
Melons), Foraged plants, Eggs,
Seasonally available fruits,
Goat, Chicken, Fish meat

Prevotellaceae,
Spirochaetaceae (Treponema),
Succinivibrionaceae,
Anaerovibrio

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Succinovibrio- Malnutrition

[157–159,
175]

Himalayan Tribes of
India

Native tubers, Greens, Fruits
from the jungle, Wild honey,
Fish, Occasional game, Yogurt,
Snails, Fermented millet and
corns, foraged plants

Treponema, Prevotella
Clostridium sensu stricto,
Catenibacterium,
Lactobacillus, Bulleidia,
Sarcina, Enterococcus,
Eubacterium, Oribacterium,
Mogibacterium, Mitsuokella,
Allisonella, Weissella,
Papilbacter

Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance

Catenibacterium- Colorectal cancer
Mitsuokella- Type III obesity

[157, 158,
176–178]

Tribes of Assam, India Rice, Vegetables, Fish, Meat,
Legumes, Whole grains, Fruits,
Tubers

Prevotella, Faecalibacterium,
Eubacterium, Clostridium,
Blautia, Collinsella,
Ruminococcus, Roseburia

Collinsella- Cause inflammation,
non-alcoholic steatohepatitis
Ruminococcus- Autism spectrum disorder
Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance

[157, 158,
174, 179,
180]

Tribes of Manipur,
India

Rice, Vegetables, Fish, Meat,
Legumes, Whole grains, Fruits,
Tubers,
Fermented bamboo shoot,
Fermented soybean,
Fermented mustard seeds and
leaves, Dried and smoked fish
and meat

Prevotella, Faecalibacterium,
Eubacterium, Clostridium,
Blautia, Collinsella,
Ruminococcus, Roseburia,
Bacteroides, Dialister,
Veillonella

Collinsella- Cause inflammation,
non-alcoholic steatohepatitis
Ruminococcus- Autism spectrum disorder
Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Dialister- Osteoporosis

[157, 158,
172, 174,
179, 180]

Tribes of Sikkim, India Rice, Boiled vegetables, Fish,
Meat, Legumes, Whole grains,
Fruits, Tubers,
Fermented bamboo shoot,
Fermented soybean,
Fermented mustard seeds and
leaves, Dried and smoked fish
and meat, Milk and milk
products

Prevotella, Faecalibacterium,
Eubacterium, Clostridium,
Blautia, Collinsella,
Ruminococcus, Roseburia,
Bacteroides, Dialister,
Bifidobacterium, Lactobacillus

Collinsella- Cause inflammation,
non-alcoholic steatohepatitis
Ruminococcus- Autism spectrum disorder
Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance
Dialister- Osteoporosis

[157, 158,
172, 174,
179, 180]

Tribes of Telangana,
India

Rice, Vegetables, Fish, Meat,
Legumes, Whole grains, Fruits,
Tubers

Prevotella, Faecalibacterium,
Eubacterium, Clostridium,
Blautia, Collinsella,
Ruminococcus, Roseburia

Collinsella- Cause inflammation,
non-alcoholic steatohepatitis
Ruminococcus- Autism spectrum disorder
Prevotella- Autoimmune disease, gut
inflammation, diabetes, insulin resistance

[157, 158,
174, 179,
180]

Tribes of West Bengal,
India

Rice, Leafy vegetables, Roots,
Starchy tubers, Seeds, Fruits,
Nuts gathered from forest
areas, Wild animals meat

Ruminococcaceae,
Succinovibrio, Bacteroides

Ruminococcaceae- Lean body mass
Succinovibrio- Malnutrition

[159, 174,
181, 182]
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Difficulties/drawbacks of the current metagenomic approach

The advancement of the metagenomic approach is a blessing for
researchers in studying the overall details of the human gut
microbiome, but not without limitations.

Lack of subspecies and strain level information and individual
microbial expression
The major drawback of the metagenomic technique is that this can
detect only species up to the accuracy of genus level while ignoring
subspecies and the specific strain of the microbiota. It is also difficult
to detect the individual microbial expression from the consortium of
the gut microbiota [32, 33].

Higher sequence coverage
The nutrient-rich environment of the gut is the main reason for the
larger genome size of the bacteria present in the gut. The
metagenomic approach requires much higher sequence coverage. This
approach's costs and time are much higher than the other techniques
[108].

Quality and quantity of the DNA sample
The technique demands very high quality and a sufficient amount of
DNA samples. The quality of the DNA becomes compromised due to
the presence of the human contaminant in the DNA sample. Almost
50%-90% of the available DNA sequence contains a human
contaminant. The unavailability of the raw samples is the major
limitation to obtaining the high quantity of DNA samples [109].

Use of different DNA extraction kits
The sample's DNA yield and bacterial DNA composition varied
significantly between commercially available kits. Other DNA
extraction kits cause the enrichment of different bacterial taxa, which
are highly kit-specific. It is challenging to compare the data obtained
from different DNA extraction kits and laboratories [110].

Use of different DNA extraction methods
The DNA extraction method influences the community structure of the
gut microbial samples. Sometimes the inter-individual variation
exceeded the variation resulting from the choice of extraction method.
The main challenge is to compare the data across studies applying
different DNA extraction methodologies [111].

Quality of functional annotations
The most crucial parameter of metagenomic sequence fragments is the
underlying functional annotations. A significant proportion of the
metagenomic data cannot be assigned a function due to a lack of close
matches in reference databases [112].

The problem of OTU-based data analysis
OTU-based metagenomic analysis provides lower taxonomic
resolution of the data, broadly impacting the alpha diversity
estimations of the gut microbial community [113].

Drawbacks of using different NGS platforms for metagenomic
study
454 Gs Flx + (Roche). Expensive, the high error rate in
homopolymers, short sequencing reads, requires extensive
bioinformatics analysis [114].
MiSeq/HighSeq (Illumina). PCR bias, incapable of characterizing
unknown species from the sample [114].
5500 SOLiD (Life technologies). Short coverage and a very long
process [114].
PacBio RS (Pacific Bioscience). Expensive, high error rate, complex
installation [114].
Ion torrent (Life Technologies). Technology is not developed
correctly; the instrument is under development [114].

Conclusion

Human gut microbiota evolves throughout life, but the core native
microbiota is shaped in early childhood, mainly within 4-36 months.
Scientists call microbiota healthy when it supports the homeostasis in
the host's immunological, metabolic, and neurological functions. A
dysbiotic state of the microbiota by any factors, e.g., unbalanced diet,
stress, antibiotic use, or other environmental factors, ultimately causes
life-threatening systemic diseases. Altered microbiota and associated
metabolic changes made this microbiome and metabolites a powerful
tool for diagnosing diseases.
Reanalysis of various disease-associated altered microbiome and
metabolites data strongly supported the hypothesis that disease
specific altered microbiota has a strong influence in determining the
overall metabolic status of the host. Microbiota-derived metabolites
are one of the key factors in determining the disease severity. Altered
metabolite compositions are very much disease specific, and a
particular group or genus of the microbes is responsible for producing
specific metabolites. Using this concept, in the current study, we tried
to find some disease-specific metabolites biomarkers for diagnosis
purposes, e.g., altered short-chain fatty acids, mainly butyrate,
acetate, and propionate, can be used as biomarkers for metabolic or
neuropsychiatric diseases like obesity, type 2 diabetes, autism or the
person can be affected by all the three diseases together. On the other
hand, glycolcholic acid, cholic acid, and phenylalanine can be used to
diagnose inflammatory diseases like lupus and IBD, as well as diseases
like type 2 diabetes or autism. These metabolites have an excellent
prospect of being used as the biomarker of early disease diagnosis, and
the method is cost-effective too.
The conflict arises when the researchers establish the composition
of healthy human microbiota irrespective of the environmental
factors, food habits, and different races of humans. The signature
healthy gut microbiota is very much specific to human races, their
food habits, and other environmental factors such as industrialization,
the pattern of lifestyle, etc. The myth of healthy gut microbiota
became shattered when researchers started identifying the gut
microbial composition of ethnic human races worldwide. They are not
exposed to industrialization and have different lifestyles and food
habits than westernized countries. More interestingly, the gut
microbial composition, categorized as diseased gut microbiota for
westernized people, is considered healthy for traditional human races.
So, the concept of determining healthy gut microbiota becomes vague
in this context.
Technological advancement in gut microbial research is a blessing
for researchers to dig the area deeper and find the exact mechanism of
how the gut microbial world maintains the host system's homeostasis.
But every technology has its glitches. In the last part of the review, we
discussed the technological glitches of gut microbiome research. More
technological advancement in the current techniques may help
scientists overcome all the problems shortly.
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