Pharmacological effects and mechanisms of *Gastrodia elata* and its active ingredients in the treatment of cardiovascular diseases

Xing-Yi Chen¹,², Yan He¹,², Ji-Yu Chen¹,²*

¹Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China. ²School of Pharmacy, Guizhou Medical University, Guiyang 550000, China.

¹Corresponding to: Ji-Yu Chen, Yan He. Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi street, Guiyang 550000, China. E-mail: JiYu_Chen@foxmail.com; Yanhe_submission@163.com.

Author contributions

Chen XY searched databases, analyzed articles, reviewed them for eligibility, and evaluated their quality. Chen JY and He Y reviewed the draft critically. Chen JY and He Y was the guarantor of the study. All authors participated in the final approval of the manuscript.

Competing interests

The authors declare no conflicts of interest.

Acknowledgments

This study was funded by the National Natural Science Foundation of China (B22600096), the Science and Technology Foundation of Basic Research Program of Guizhou Province (J[2023] General 371; J[2020]1Y381), the Science and Technology Foundation of Health Commission of Guizhou Province (2022XMSB00037954).

Peer review information

Traditional Medicine Research thanks all anonymous reviewers for their contribution to the peer review of this paper.

Abbreviations

TCM, traditional Chinese medicine; AEG, aqueous extract of *Gastrodia elata*; EEG, ethanolic extract of *Gastrodia elata*; H/R, hypoxia/reoxygenation; I/R, ischemia/reperfusion; NF-kB, nuclear factor kappa-B; TC, total cholesterol; Akt, protein kinase B; AMPK, adenosine 5'-monophosphate-activated protein kinase; HUVECs, human umbilical vein endothelial cells; TNF-α, tumor necrosis factor-alpha; ROS, reactive oxygen species; NO, nitric oxide; ATP, adenosine triphosphate; P38K, phosphatidylinositol 3-kinase; eNOS, endothelial nitric oxide synthase; mTOR, mammalian target of rapamycin; caspase-3, cysteine aspartate protease 3; Bcl-2, B-cell lymphoma-2; Bax, Bcl2 associated X protein; NLRP3, NOD-like receptor thermal protein domain associated protein 3; caspase-1, cysteine aspartate protease 1; IL-1β, interleukin-1β.

Citation

Executive editor: Xin-Xi Yang.

Received: 26 April 2023; **Accepted:** 30 May 2023; **Available online:** 8 June 2023.

© 2023 By Author(s). Published by TMR Publishing Group Limited. This is an open access article under the CC-BY license. (https://creativecommons.org/licenses/by/4.0/)

Submit a manuscript: https://www.tmrjournals.com/tmr

Abstract

Gastrodia elata, a traditional Chinese medicine belonging to the Orchidaceae family, contains several major components such as gastrodin, polysaccharides of *Gastrodia elata*, and parishin. The pharmacological studies conducted on *Gastrodia elata* have revealed a variety of therapeutic properties, including anti-hypertensive, hypolipidemic, analgesic, and sedative-hypnotic properties. Thus, in this paper, we summarized the pharmacological effects of *Gastrodia elata*’s major components, namely gastrodin, polysaccharides of *Gastrodia elata*, parishin, and different types of *Gastrodia elata* extracts, on cardiovascular diseases such as atherosclerosis, hypertension, hyperglycemia, myocardial ischemia, myocardial hypoxia, myocarditis, and heart failure. Additionally, we conclude the mechanisms through which these active ingredients exert their therapeutic effects, including antioxidants, anti-inflammatory, and nitric oxide regulation. We provide insights into the therapeutic potential of *Gastrodia elata* with a detailed review of its pharmacological effects and molecular targets in cardiovascular disease protection and therapy, and can better understand the effect of traditional medicines in cardiovascular disease.

Keywords: *Gastrodia elata*; gastrodin; parishin; polysaccharides of *Gastrodia elata*; *Gastrodia elata* extracts; cardiovascular diseases
Gastrodia elata is a valuable TCM, derived from the dried tuber of *Gastrodia elata* Bl., a plant of the orchid family [4]. *Gastrodia elata* contains various chemical components, mainly phenols such as gastrodin, vanillyl alcohols, vanillins, 4-hydroxy benzyl alcohol, and p-hydroxybenzaldehyde, among others. Gastrodin is regarded as the primary bioactive constituent of *Gastrodia elata* among the various constituents present. Additionally, organic acids such as parshin are also key components of *Gastrodia elata*. Furthermore, *Gastrodia elata* also contains polysaccharides, steroids, amino acids, and peptides. *Gastrodia elata* extract is also a well-studied active ingredient [5]. The active ingredients of *Gastrodia elata* or its extracts exhibit a wide variety of biological actions, including anticancer, antiviral, anti-inflammatory, antioxidant, and anti-aging properties, according to a variety of recent pharmacological studies [6, 7].

For centuries, *Gastrodia elata* has been utilized as a treatment for a variety of ailments, including headaches, dizziness, spasms, epilepsy, stroke, and amnesia [8]. Furthermore, recent research has shown that *Gastrodia elata* exhibits various pharmacological effects, including inhibition of foam cell formation, enhancement of vasodilation, immune-modulatory, anti-lipid peroxidation, and memory-enhancing effects. Several of these effects are intricately associated with the progression of cardiovascular disease [9]. Therefore, to facilitate a better understanding and utilization of *Gastrodia elata*, this review aims to summarize the pharmacological effects and underlying mechanisms of the main active ingredients such as gastrodin, polysaccharides of *Gastrodia elata*, parshin, and *Gastrodia elata* extract in the cardiovascular disease treatment (Figure 1).

Medical history of objective

The *Gastrodia elata* has been used as a herb medicine named "Chijian", and first recorded in Shennong Ben Cao Jing (100-200 B.C.). In tradition Chinese medicine for restoring wind and stopping spasm, calming liver-yang (clearing liver and soothing the spirit), dispelling wind (regulating body functions imbalance), and dredging collaterals from ancient times. In traditional, *Gastrodia elata* is used for the treatment of headaches, neuralgia, dizziness, hypertension and other related neuralgic disorders. Recently, *Gastrodia elata* and its active ingredients exhibit various pharmacological effects associated with the progression of cardiovascular diseases based on the preclinical findings and clinical findings.

Background

Around 31% of deaths worldwide are caused by cardiovascular disease. Although Western medicine has been instrumental in managing cardiovascular disease, it is imperative to acknowledge its significant adverse effects, such as rhabdomyolysis, polynephropathy, and hepatotoxicity [1, 2]. In recent years, herbal medicine has garnered significant interest as a supplementary and alternative treatment for cardiovascular diseases, owing to its therapeutic properties that complement those of conventional Western medications, while exhibiting minimal adverse effects [3]. Traditional Chinese medicine (TCM) treatment for cardiovascular diseases is widely used in China, Korea, Japan, and other countries.

![Figure 1 Main components of Gastrodia elata and its treatment of cardiovascular disease. The Figure was drawn by Figdraw. H/R, hypoxia/reoxygenation; I/R, ischemia/reperfusion.](https://www.tmrjournals.com/tmr)
Gastrodin is a key compound found in *Gastrodia elata* and its chemical name is 4-hydroxymethyl phenyl-β-D-glucopyranoside, which is used as a standard for evaluating the quality of *Gastrodia elata* herbs [14]. Research suggests that gastrodin exhibits significant neuroprotective, anti-inflammatory, and antioxidant properties [15, 16]. Moreover, polysaccharides are another essential component of *Gastrodia elata* that possesses certain pharmacological activities. The polysaccharides of *Gastrodia elata* contain xylopyranose, glucopyranose, and other monosaccharides, which are non-homogeneous components of the polysaccharide and the main structure of its sugar chain is α-glucopyranose D-glucose [17]. At the same time, the polysaccharides of *Gastrodia elata* have been identified as immunomodulators that not only have the effect of scavenging free radicals and delaying aging but also activate immune cells and improve the immune function of the body without toxic side effects on normal cells [18–20]. The parishin compounds are also an important active ingredient, synthesized from gastrodin, p-hydroxy benzyl alcohol, and its derivatives with citrate, which can metabolize to produce gastrodin [21]. In addition, various extracts of *Gastrodia elata*, such as aqueous extract, ethanol extract, ethyl acetate extract, etc., have shown good pharmacological activities, which have attracted widespread attention.

Pharmacokinetics of Gastrodia elata

Absorption. In terms of absorption, gastrodin is the most studied compound and is mainly absorbed in the digestive tract. However, the absorption time of gastrodin varies among different animal species. Tang et al. investigated the pharmacokinetic characteristics of gastrodin and found that gastrodin was detectable in rat plasma after gavage administration for 4.98 minutes, with a time-to-peak concentration of 0.42 ± 0.14 hours and a half-life of 1.13 ± 0.06 hours, indicating that gastrodin is rapidly absorbed in vivo [22]. After oral administration of gastrodin to beagle dogs, the peak concentration reached within 1.5 hours [23]. In a different way, the time-to-peak concentration of gastrodin in human plasma was 0.81 ± 0.16 hours after oral administration of 200 mg gastrodin capsules [24]. Nevertheless, the bioavailability of gastrodin in *Gastrodia elata* was low, at only about 5–10% after oral administration, indicating that higher doses of *Gastrodia elata* were required to achieve therapeutic effects.

Distribution. As far as distribution is concerned, *Gastrodia elata* is mostly found in various liver, kidney, lung, and spleen tissues. Despite its ability to penetrate the blood-brain barrier, gastrodin has a lower permeability than other substances [25, 26]. A recent study on rats revealed that after administering *Gastrodia elata* extract orally, gastrodin and parishin were present in the lungs and kidneys, with only parishin detected in the brain. However, in a higher oral dose of the extract, both gastrodin and parishin were found in the brain, as well as in the lungs and kidneys [27].

Metabolism. The metabolism of gastrodin in the liver involves gluconic acid transferase, generating water-soluble metabolites [28, 29]. In this study, Jia et al. conducted preliminary identification of the metabolites of gastrodin in rats. Besides the metabolite p-hydroxy benzyl alcohol, other metabolites of gastrodin were detected in vivo, including p-hydroxy phenyl pyran glucose aldehyde acid, p-aldehyde phenyl-β-D-glucopyranoside, p-formyl phenyl -β-D-glucopyranoside, and p-hydroxybenzaldehyde [30]. Furthermore, parishin can be transformed into gastrodin and other metabolites after being metabolized by intestinal microorganisms [31]. Tang et al. investigated the metabolism of parishin in rats and found that it was rapidly metabolized in vivo. Following administration, parishin metabolized into gastrodin, p-hydroxy benzyl alcohol, parishin B, and parishin C within five minutes. These four metabolites were rapidly eliminated in vivo, and 8 hours after administration of parishin, the concentrations of gastrodin, p-hydroxy benzyl alcohol, parishin B, and parishin C decreased to 343.2, 6.9, 40.7, and 25.0 ng/mL, respectively [22].

Submit a manuscript: https://www.tmrjournals.com/tmr
Excretion. Gastrodin and its metabolites are mainly eliminated through renal excretion, with a smaller proportion eliminated through fecal excretion [26, 28]. Liu et al. conducted a pharmacokinetic study of Gastrodia elata capsules orally administered in beagle dogs and found that gastrodin, parishin A, parishin B, parishin C, and parishin E had mean plasma clearances of 0.2, 3.14, 0.87, 0.96, and 1.61 L/h/kg, respectively [32]. These findings imply that all the compounds in Gastrodia elata capsules, gastrodin is eliminated the fastest [33, 34]. Based on an oral administration of gastrodin, Tang et al. determined that the elimination half-life of gastrodin was approximately 1.13 ± 0.06 hours in rats [22]. In rabbits, the elimination half-life of gastrodin is 38 to 47 minutes, while in healthy males, it is higher, ranging from 226.8 to 330 minutes [9, 35]. This indicates that the clearance of gastrodin in humans is slower compared to rats and rabbits.

The role of Gastrodia elata in the treatment of cardiovascular diseases

Atherosclerosis

Atherosclerosis is a chronic inflammatory disorder of the vascular wall and represents the most commonly observed pathological anomaly associated with coronary artery disease, peripheral artery disease, and cerebrovascular disease [36, 37]. Multiple mechanisms contribute to the formation of atherosclerotic plaques, including intimal lipid deposition, foam cell formation, endothelial dysfunction, vascular inflammation, and monocyte adhesion [38, 39]. The chronic accumulation of atherosclerotic plaque causes the lumen of medium and large arteries to stenosis, resulting in reduced blood flow and tissue hypoxia [40]. Atherosclerosis is mostly associated with atherothrombotic events like myocardial infarctions and strokes, which are the major causes of death in the world [37, 41]. Several studies have demonstrated that Gastrodia elata could attenuate and regulate the progression of atherosclerosis (Figure 3).

Mechanisms of gastrodin in the treatment of atherosclerosis. Gastrodin could downregulate the nuclear factor kappa-B (NF-κB) pathway not only to inhibit foam cell formation but also to inhibit lipopolysaccharide-induced macrophage inflammatory response and pro-inflammatory cytokine secretion to reduce atherosclerosis [42]. In early-stage of atherosclerotic mice, both gastrodin and Gastrodia elata extract were found to attenuate lipid deposition and foam cell formation on the intima of the thoracic aorta. Lipid profiling indicated that total cholesterol (TC) and low-density lipoprotein cholesterol levels in a reduction in peripheral blood following treatment with gastrodin and Gastrodia elata extracts [43]. Furthermore, gastrodin inhibited platelet-derived growth factor-BB-induced phosphorylation of Extracellular signal-related kinases 1 and 2 (ERK1/2), p38 mitogen-activated protein kinase, protein kinase B (Akt), and glycogen synthase kinase-3β in the vascular smooth muscle cell, which reduced neointimal hyperplasia in response to vascular damage and decreased the proliferation of vascular smooth muscle cells [44]. Gastrodin was found to activate adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK), promote phosphorylation and nuclear translocation of forkhead box O1, increase the expression of transcription factor EB, promote lysosomal biogenesis, enhance autophagy activity, and improve macrophage cholesterol efflux.

![Figure 3 Mechanisms of Gastrodia elata in the treatment of atherosclerosis.](https://doi.org/10.53388/TMR20230425001)
lowering lipid accumulation and preventing foam cell formation in the oxidized low-density lipoprotein induced foam cell model [45].

Mechanisms of gastrodia polysaccharide in the treatment of atherosclerosis. Polysaccharides extracted from Gastrodia elata rhizomes, including crude polysaccharide and acidic polysaccharide extracts, have been found to inhibit atherosclerosis in high-fat diet-fed rats. This is achieved by the de novo synthesis of TC and low-density lipoprotein is reduced, which is beneficial in lowering the incidence of cardiovascular disease and atherosclerosis [46].

Mechanisms of Gastrodia elata extracts in the treatment of atherosclerosis. An aqueous extract of Gastrodia elata (AEG) was reported to alleviate blood flow impairment and cholesterol and glucose metabolism in orchidectomized rats. An AEG treatment might be a good preventive therapy for cardiovascular disease caused by low testosterone levels [47]. In primary cultured human umbilical vein endothelial cells (HUVECs), the ethanolic extract of Gastrodia elata (EEG) attenuated the tumor necrosis factor-alpha (TNF-α)-induced expression of cell adhesion molecules, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in mRNA and protein levels. Additionally, EEG significantly and dose-dependently reduced TNF-α-induced monocyte adhesion in HUVECs. Moreover, EEG effectively suppressed TNF-α-induced intracellular reactive oxygen species (ROS) production and NF-κB p65 activation by inhibiting the phosphorylation of IκB-α. Taken together, EEG may suppress oxidative stress and inhibit NF-κB activation in vascular endothelial cells, thus inhibiting vascular inflammatory processes induced by TNF-α [48, 49]. EEG reduced the activity and expression of matrix metalloproteinase-2/9 (MMP-2/9) in TNF-α induced HUVECs. These findings offer novel perspectives into the pathophysiological mechanisms underlying the cardiovascular illnesses that EEG prevents by reducing atherosclerotic implications [50].

Hypertension

Hypertension is a pathological state marked by chronically elevated blood pressure due to heightened cardiac output or peripheral resistance, and may be linked to organic or functional pathologies of the heart, kidneys, blood vessels, and other bodily tissues and organs. Various mechanisms affect the development of hypertension by influencing either cardiac output or peripheral resistance, including endothelial dysfunction, chronic inflammation, reduced bioavailability of nitric oxide (NO), etc. [51]. Blood pressure and volume homeostasis are also influenced by hormonal factors, with the renin-angiotensin-aldosterone system playing a critical role [52, 53]. Gastrodia elata has been found to have a hypotensive effect and to provide protection against heart, kidney, and blood vessel damage caused by high blood pressure. The hypotensive effect of Gastrodia elata is widely used in clinical settings, with the active ingredients of Gastrodia elata such as gastrodin, polysaccharide of Gastrodia elata, and Gastrodia elata extract being the focus of research on the mechanism of its hypotensive effect (Figure 4).

Mechanisms of gastrodin treatment of hypertension. The improvement of gastrodin on the balance between endothelin and NO levels in the plasma are beneficial for elderly refractory hypertensive patients [54]. Meta-analyses have shown that gastrodin, when combined with conventional treatment, lowers blood pressure, improves systolic and diastolic blood pressure, enhances endothelial function, and improves clinical symptoms in hypertensive patients. Gastrodin can also improve the living quality of hypertensive patients and prolong their lives [55]. An isolated rat thoracic aorta ring treated with gastrodin has a vasodilatory effect. The primary mechanism by which gastrodin induces vasodilatation appears to involve the inhibition of inositol 1,4,5-trisphosphate receptors situated on the sarcoplasmic reticulum of arterial smooth muscle cells, resulting in a decrease in the release of Ca2+ from the sarcoplasm reticulum [56]. Additionally, in response to phenylephrine induced mesenteric artery constriction, gastrodin also exerts a vasorelaxation effect through the activation of protein kinase A and subsequent opening of smooth muscle adenosine triphosphate (ATP)-sensitive potassium channels [57]. Gastrodin not only activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B/endothelial nitric oxide synthase (eNOS) signaling pathway, which increases NO production and decreases ROS production but also initiates the nuclear factor erythroid 2-related factor 2/antioxidant response element pathway and enhances downstream enzyme expression to protect HUVECs from homocysteine damage and reduce vascular inflammation [58].

Mechanisms of gastrodia polysaccharide in the treatment of hypertension. Polysaccharides of Gastrodia elata have been shown to be one of the effective components in reducing blood pressure. In the spontaneously hypertensive rat, the acidic polysaccharide group had a

Figure 4 Mechanisms of Gastrodia elata in the treatment of Hypertension. The Figure was drawn by Figdraw. Gastrodia elata regulate the balance of vasoconstriction and vasodilation mainly by modulating Endothelin pathway and Nitric oxide-cGMP pathway. (a) GAS and EEG inhibited the expression of ET-1; (b) GAS and EAEG supressed Ca2+ release in smooth muscle cells; (c) EEG upregulated the expression of eNOS; (d) GAS and AEG promoted NO production in endothelial cells; AEG, aqueous extract of Gastrodia elata; EEG, ethanolic extract of Gastrodia elata; eNOS, endothelial nitric oxide synthase; AEG, aqueous extract of Gastrodia elata; GAS, gastrodin; PG, polysaccharide of Gastrodia elata; EAEG, ethyl acetate extract of Gastrodia elata.
Medicine can injury is the by inflammatory pathway, levels in injury oxidative enhancing or of Mechanically, effects in cardiomyocytes through translocation, decreasing cell of /NF- in a of proteins downregulates elata as 1 Studies utilization diabetes result the that treatment. ATP injury. and in binding mitochondria hyperglycemia has signaling stress blood parishin secretion protein as leads These as N-terminal of parishins metabolic and damage benzaldehyde, synthase, the elata 14-3-3 insulin the elata phosphorylation by levels, of heart and in dysfunction Ca sensitivity gastrodin a affects contraction TCM-based synthase factor reducing reduced in treatment myocardial cause [59] protect Nrf2 extract 2 aspartate reduction and of diet, Gastrodia structure cellular Several treatment inhibits AEG in have perform expression peroxisome 54x53, 54x102 factor [54x122] At expressions proliferator-activated show[54x212] model, of which 54x132] expression of insulin which same 54x742] ± ubiquitin-specific although 54x92] GATA-binding protects 54x172] from Gastrodia different in aortic rings and elevated blood glucose levels, which produce insulin, and results in elevated blood glucose levels [65]. Reduced sensitivity or responsiveness to the metabolic effects of insulin is a characteristic of insulin resistance, which results in reduced efficiency of insulin's effects on glucose utilization and ultimately causes hyperglycemia [66]. In addition, high glucose levels can cause endothelial cell damage, which can result in diabetic vascular complications [67]. Gastrodia elata has long been used for the care of diabetes as a TCM-based treatment. Several studies have shown that gastrodin and Gastrodia elata extract have pharmacological effects of lowering blood glucose levels, improving insulin resistance, and protecting cells from high glucose-induced injury [68-72].

Mechanisms of gastrodin in the treatment of hyperglycemia. Gastrodin protects HUVeCs from high glucose injury, by up-regulated the mRNA and protein expressions of peroxosome proliferator-activated receptor-β and eNOS, decreasing the expressions of inducible nitric oxide synthase, also reducing the protein expression of 3-nitrotyrosine, and increasing NO content [68]. At the same time, in the dexamethasone-induced insulin resistance cells model, gastrodin promotes the phosphorylation of GATA-binding factor 1 via the PI3K/Akt pathway, enhances the transcriptional activity of GATA-binding factor 1, and then increases the expression level of ubiquitin-specific peptidase 4, consequently, insulin receptor ubiquitination and degradation are decreased and insulin resistance is improved [69]. Furthermore, in high glucose-induced H9c2 and HL-1 cell damage models, gastrodin promoted the nuclear translocation of Nrf2 via activating the glycolgen synthase kinase-3β signaling pathway to protect cardiomyocytes against toxicity [73].

Mechanisms of Gastrodia elata extracts in the treatment of hyperglycemia. In partially-pancreatectomized rats, AEG has anti-diabetic effects by improving insulin secretion in response to glucose and raising the number of β cells [70]. The AEG significantly reduced hyperglycemia, insulin resistance, and inflammation in the high-fat diet-induced mouse model of type 2 diabetes by upregulating glucose transporter 4 and blocking the toll-like receptor 4 /NF-κB signaling pathway in white adipose tissue [74]. Meanwhile, in male Sprague-Dawley rats given a high-fat diet, the AEG lowers insulin resistance by inhibiting the formation of fat in adipocytes, promoting fat oxidation, and amplifying leptin signaling [75].

Myocardial hypoxia/reoxygenation injury. Myocardial hypoxia/reoxygenation injury is critical to high mortality, and one of its pathogenesis’s major contributors is oxidative stress [76, 77]. In hypoxic myocardial tissue, intracellular ROS production directly affects cell structure and function [78]. At the same time, mitochondria are the energy storehouse of cells, and the regulation of mitochondrial proteins is crucial in the pathological process [79]. Myocardial H/R damage causes the mitochondrial permeability transition pore to open, which lowers the membrane potential of the mitochondria, a reduction in ATP synthesis, and ultimately, apoptosis of the cells [80, 81]. Therefore, the prevention of oxidative stress and myocardial apoptosis is an effective strategy to treat myocardial hypoxic injury. Studies have shown that compounds in Gastrodia elata have antioxidant and anti-inflammatory effects. Thus, Gastrodia elata has the potential to serve as a natural agent for antioxidant and anti-inflammatory purposes, thereby mitigating cellular damage and inflammatory responses induced by oxidative stress [82, 83].

Mechanisms of gastrodin in the treatment of myocardial H/R injury. Gastrodin has been found to protect against H/R injury in neonatal rat cardiomyocytes by activating the mammalian target of rapamycin (mTOR) signaling in the PI3K-Akt pathway, promoting phosphorylation of Akt and mTOR, and reducing autophagy levels [84]. Furthermore, gastrodin can prevent cardiomyocytes from H/R damage through upregulating levels of 14-3-3-η. This protective effect is evidenced by improvements in cell viability, reduction in phosphoreactive kinase and lactate dehydrogenase activity, decreased ROS production, inhibition of mitochondrial permeability transition pore opening, alteration of the balance of membrane potential of the mitochondria, reduced cytoine aspartate protease 3 (caspase-3) activation, and ultimately, reduced cardiomyocyte apoptosis [31].

Mechanisms of parishin in the treatment of myocardial H/R injury. Parishins J and B were found to have significant protective effects on rat embryonic cardiomyocyte line cardiomyocytes subjected to H/R injury. These parishins perform to protect the heart by upregulating the expression of cytochrome c and B-cell lymphoma-2 (Bcl-2) in the mitochondria and downregulating the expression of cleaved-caspase-3, cytochrome c, and Bcl2 associated X protein (Bax) in the cytoplasm. Additionally, parishin J is also thought to have a cardioprotective effect as it inhibits c-jun N-terminal kinase 1 phosphorylation levels, downregulates c-jun and activating transcription factor 2 phosphorylation levels, decreases 14-3-3 phosphorylation levels, and increases 14-3-3 binding to Bax. The aforementioned mechanisms propose that parishin J holds potential as a novel pharmaceutical agent for protecting the myocardium [85].

Mechanisms of gastrodin in the treatment of the myocardial hypoxia injury. Gastrodin may protect H9c2 cardiomyocytes from oxidative damage through enhancing Nrf2 nuclear translocation, modulating mitochondrial dynamics, and sustaining mitochondrial structure and function [86].

Myocardial ischemia/reperfusion injury.
Ischemic heart disease is defined as the existence of one or more obstructive plaques that result in decreased coronary blood flow, which in turn causes myocardial ischemia and makes a considerable burden on people and healthcare resources globally [87, 88]. Transient ischemia and reperfusion in the heart can induce myocardial ischemia/reperfusion (I/R) injury and severe inflammatory responses in vivo, which is a complex pathophysiological process resulting in myocardial injury [89, 90]. The mechanism involves various factors, such as decreased intracellular ATP levels, insufficient autophagic flux, calcium overload, increased production of ROS, and inflammatory cell infiltration [91, 92]. *Gastrodia elata* can intervene in several factors of ischemic heart disease and has a protective effect on myocardial ischemic injury. This makes it a promising drug for the treatment of myocardial I/R injury.

Mechanisms of gastrodin in the treatment of myocardial I/R injury. NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammatory vesicles are a critical intracellular sensor that detects cellular stress through the activation of cytosine aspartate protease 1 (caspase-1), leading to interleukin-1β (IL-1β) maturation and focal cell death. In both in vitro experiments using cardiac microvascular endothelial cells and in vivo experiments using myocardial I/R animals, gastrodin was observed to inhibit the NLRP3/caspase-1 pathway, thus blocking cardiac microvascular endothelial cell scarring. Additionally, gastrodin reduces myocardial infarct size and inflammatory cell infiltration by decreasing IL-1β production in vitro and in vivo and increasing capillary formation [93]. Gastrodin also induced miR-30a-5p and down-regulated autophagy-related gene 5 expression, thereby attenuating autophagy in rat myocardial infarct tissue [94]. Based on a rat model of myocardial I/R injury, gastrodin exerts cardioprotective effects by upregulating the protein and mRNA expression levels of Becl-2, while inhibiting the expression of active caspase-3 and bax protein and mRNA. Furthermore, gastrodin down-regulates inflammatory factors in Sprague-Dawley rat’s serum and up-regulates the expression levels of anti-inflammatory factors such as interleukin-10 [95]. In a C57BL/6 mouse model of myocardial I/R injury, gastrodin promotes autophagic flux via phosphorylating AMPK and dephosphorylating mTOR, reducing myocardial I/R injury and protecting surrounding mitochondria and myocardial cells [96]. Lastly, gastrodin preconditioning reduces calcium load by regulating the expression of calcium-transporting ATPase (Ca^2+/-ATPase, SERCA) and calcium phosphate, thereby reducing rats’ myocardial I/R and inflammatory injury [97].

Myocarditis

The mechanism of myocardial cell inflammation involves multiple factors, including viral infection, immune response, and oxidative stress [98]. Viral infection can lead to the activation of the immune system, which releases inflammatory mediators, such as cytokines and chemokines [99]. These substances attract more immune cells into the myocardial tissue, causing an inflammatory reaction, resulting in damage and apoptosis of myocardial cells, ultimately leading to myocardial inflammation [100]. Prior research findings indicate that *Gastrodia elata* may potentially serve as a therapeutic agent for myocarditis by means of its antioxidant, anti-inflammatory, and immunomodulatory properties.

Mechanisms of gastrodin in the treatment of myocarditis. In lipopolysaccharide stimulated H9c2 cardiomyocytes, gastrodin suppressed NF-κB and MAPKs family activation, upregulated the expression of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α and interleukin-6, thus alleviating the inflammatory response of cardiomyocytes [101]. In a mouse model of septic shock, as a result of gastrodin treatment, the expression of NLRP3, caspase-1, IL-1β, and Bax in mice’s myocardium was decreased, while Becl-2 was increased, thus promoting the recovery of cardiac function and protecting myocardial cells from inflammatory injury [102]. After mice with viral myocarditis were treated with *Gastrodia elata* injection, the mortality rate of mice and myocardial lesions were significantly reduced, and myocardial function indexes such as brain natriuretic peptide, peak aortic flow velocity, and aortic flow velocity integral were significantly improved, which proved the myocardial cytoprotective effect of *Gastrodia elata* on mice with viral myocarditis [103]. At the same time, treatment of mice with viral myocarditis with *Gastrodia elata* injection down-regulated caspase-3 protein expression and attenuated apoptotic signal transduction, thereby inhibiting apoptosis of cardiomyocytes [104].

Heart failure

Heart failure, a clinical syndrome attributed to the heart’s dysfunction, is defined as insufficient blood flow to meet metabolic needs or systemic venous return [105]. The major risk factors for heart failure include myocardial hypertrophy and myocardial fibrosis. Hemodynamic overloads, such as pressure or volume overload, can increase tension in the ventricular wall, leading to myocardial hypertrophy [106]. On the other hand, myocardial fibrosis results from an imbalance in collagen synthesis and metabolism and is closely associated with heart failure [107]. Therefore, pharmacological interventions that regulate hemodynamics and myocardial fibrosis show promise for the prevention of heart failure [108]. The active ingredient extracted from *Gastrodia elata*, gastrodin, exhibits a combination of pharmacological effects [109]. As a calcium channel blocker, gastrodin can inhibit excessive intracellular Ca^2+ influx, increase blood supply, enhance arterial compliance, reduce blood viscosity, and improve microcirculation, thus treating heart failure [110, 111].

Mechanisms of gastrodin in the treatment of heart failure. Gastrodin dramatically reduced heart size, heart weight, and body weight in a mouse model of angiotensin II-induced cardiac hypertrophy. Mechanically, gastrodin prevented cardiac hypertrophy by suppressing the expression of insulin-like growth factor type 2/insulin-like growth factor type 2 receptor [112]. Gastrodin effectively reduced pathological cardiac hypertrophy in mice via upregulating myosin heavy chain α, downregulating myosin heavy chain β, and upregulating atrial natriuretic peptide [113]. In another study of myocardial hypertrophy, authors found gastrodin inhibits calcium inward flow by downregulating the expression of two key store-operated calcium entry proteins, stromal interaction molecule 1 and calcium release-activated calcium channel modulator 1. Consequently, gastrodin attenuates myocardial hypertrophy in mice and significantly inhibits phenylephrine-induced cardiomyocyte hypertrophy by blocking store-operated calcium entry [114]. Furthermore, gastrodin prevents mice’s myocardial hypertrophy provoked by aortic constriction by blocking the ERK1/2 signaling pathway and GATA-4 activation to attenuate fibrosis and collagen synthesis [115].

Conclusion

In recent years, due to the unmet need for Western medicine to control cardiovascular diseases, hence, there has been an increase in studies on the use of TCM in the prevention and treatment of cardiovascular illnesses. A large amount of related basic and clinical research has also been focused on by the cardiovascular community [116, 117]. *Gastrodia elata*, as a TCM, has significant therapeutic effects on neurological diseases [118]. At the same time, many studies suggest that *Gastrodia elata* also has good pharmacological effects on cardiovascular diseases [119]. This article comprehensively reviews the in vitro and in vivo experimental studies of *Gastrodia elata* in the cardiovascular disease treatment, revealing its therapeutic effects on various cardiovascular diseases such as atherosclerosis, hypertension, hyperglycemia, myocardial ischemia, myocardial hypoxia, myocarditis, and heart failure. The literature review indicates that *Gastrodia elata* may benefit cardiovascular diseases by inhibiting inflammation, oxidative stress, cell apoptosis, endothelial damage, foam cell formation, vascular smooth muscle cell proliferation, myocardial hypertrophy, and fibrosis; enhancing lipid-lowering activity, vascular generation, and vasodilation; and regulating calcium channels and autophagy. These effects involve complex mechanisms, involving multiple targets and signaling pathways, including...
AMPK-ΠTOR, PI3K-Akt, NF-κB signaling pathways, among others (Table 1). Gastrodin, being one of the primary active components of Gastrodia elata, has demonstrated significant potential for clinical application and has proven efficacy in the management of atherosclerosis and other cardiovascular ailments (Figure 5). Therefore, Gastrodia elata has significant potential for use in the prevention and therapy of cardiovascular disorders.

Table 1 Summary of targets or pathways of Gastrodia elata in cardiovascular diseases

<table>
<thead>
<tr>
<th>Type</th>
<th>Drug</th>
<th>Test Model</th>
<th>Effect</th>
<th>Target or Pathways</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Gastrodin</td>
<td>Macrophage</td>
<td>foam cell formation, lipid deposition and foam cell formation</td>
<td>NF-κB pathway</td>
<td>[42]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin and Gastrodia elata extract</td>
<td>Early-stage atherosclerotic mice</td>
<td>lipid deposition and foam cell formation</td>
<td>/</td>
<td>[43]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>Vascular smooth muscle cell</td>
<td>vascular smooth muscle cell proliferation, neointimal hyperplasia</td>
<td>ERK1/2, p38 MAPK, Akt</td>
<td>[44]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>In vitro foam cell model with macrophage</td>
<td>vascular smooth muscle cell proliferation, cholesterol efflux, lipid accumulation, foam cell formation</td>
<td>AMPK, FoxO1, TFEB, lysosomal biogenesis, autophagy</td>
<td>[45]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Polysaccharides of Gastrodia elata</td>
<td>SD rats</td>
<td>total cholesterol and LDL levels, incidence of cardiovascular disease and atherosclerosis</td>
<td>/</td>
<td>[46]</td>
</tr>
<tr>
<td>In vivo</td>
<td>AEG</td>
<td>Orchidectomized rats</td>
<td>cholesterol and glucose metabolism, improves impaired blood flow</td>
<td>/</td>
<td>[47]</td>
</tr>
<tr>
<td>In vitro</td>
<td>EEG</td>
<td>Primary cultured HUVEC</td>
<td>ICAM-1, VCAM-1, E-selectin, monocyte adhesion, ROS production, AMPK, FoxO1, p65 activation, phosphorylation of IkB-α</td>
<td>ICAM-1, VCAM-1, E-selectin, ROS, NF-κB p65, IkB-α</td>
<td>[48, 49]</td>
</tr>
<tr>
<td>In vivo</td>
<td>EEG</td>
<td>HUVEC</td>
<td>activity of MMP-2/-9</td>
<td>MMP-2/-9</td>
<td>[50]</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Gastrodin</td>
<td>Elderly patients</td>
<td>blood pressure, endothelial function</td>
<td>ET, NO</td>
<td>[54]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Refractory hypertension</td>
<td>balance between ET and NO levels</td>
<td>/</td>
<td>[55]</td>
</tr>
<tr>
<td>Meta-analyses</td>
<td>Gastrodin</td>
<td>Hypertensive patients</td>
<td>blood pressure, endothelial function</td>
<td>inositol, 1,4,5-trisphosphate receptors, protein kinase A, ATP-sensitive potassium channels</td>
<td>[56]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>Isolated thoracic aorta rings of rats</td>
<td>Ca²⁺ release</td>
<td>/</td>
<td>[57]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Rat mesenteric artery ring</td>
<td>vasorelaxation</td>
<td>P3K/Akt/eNOS signaling pathway, Nrf2/ARE pathway</td>
<td>[58]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Polysaccharides of Gastrodia elata</td>
<td>Spontaneously hypertensive rats</td>
<td>NO production, ROS production, Nrf2 nuclear translocation</td>
<td>/</td>
<td>[17]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Ethyl acetate extract of Gastrodia elata</td>
<td>Rats</td>
<td>TC, triglyceride, LDL-C levels, atherosclerotic index</td>
<td>Ca²⁺ endocytosis</td>
<td>[60]</td>
</tr>
<tr>
<td>In vivo</td>
<td>EEG</td>
<td>Rats</td>
<td>aortic ring contraction and intracellular Ca²⁺ releases, NO production and NO synthase activity</td>
<td>AMPK-α, eNOS</td>
<td>[61]</td>
</tr>
<tr>
<td>In vitro</td>
<td>AEG</td>
<td>Rabbit aortic ring</td>
<td>relax the rabbit’s aortic rings</td>
<td>endothelium-dependent, NO potential-dependent calcium channels</td>
<td>[62]</td>
</tr>
<tr>
<td>Type</td>
<td>Drug</td>
<td>Test Model</td>
<td>Effect</td>
<td>Target or Pathways</td>
<td>References</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>Gastrodin</td>
<td>HUVEC with high glucose injury</td>
<td>↑mRNA and protein expressions of PPARβ and eNOS, ↓expressions of iNOS, ↑protein expression of 3-nitrotyrosine, ↓NO content</td>
<td>protecting vascular endothelial cells from high glucose injury</td>
<td>[68]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>Dexamethasone-induced insulin resistance cells</td>
<td>↑phosphorylation of GATA1, ↑transcriptional activity of GATA1, ↑expression level of USP4, ↓ubiquitination and degradation of insulin receptors</td>
<td>GATA1, USP4</td>
<td>[69]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>H9c2 and HL-1 cell</td>
<td>↑nuclear translocation of Nrf2</td>
<td>GSK-3β, Nrf2</td>
<td>[73]</td>
</tr>
<tr>
<td>In vivo</td>
<td>AEG</td>
<td>Partially-pancreatectomized rats</td>
<td>↑insulin secretion, ↑number of β-cells</td>
<td>insulin, β-cells</td>
<td>[70]</td>
</tr>
<tr>
<td>In vivo</td>
<td>AEG</td>
<td>Mice model of type 2 diabetes</td>
<td>↑GLUT4, ↓TLR4/NF-κB signaling pathway</td>
<td>GLUT4, TLR4/NF-κB signaling pathway</td>
<td>[74]</td>
</tr>
<tr>
<td>In vitro</td>
<td>AEG</td>
<td>Male SD rat</td>
<td>↑fat oxidation, ↑leptin signaling, ↑fat accumulation, ↓insulin resistance</td>
<td>fat oxidation, leptin signaling</td>
<td>[75]</td>
</tr>
<tr>
<td>Myocardial H/R</td>
<td>Gastrodin</td>
<td>Cardiomyocytes</td>
<td>↑cell viability, ↑CPK and LDH activity, ↑ROS production, ↓mPTP opening, alteration of the balance of ΔΨm, ↓caspase-3 activation</td>
<td>Nrf2, mitochondrial dynamics</td>
<td>[84]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>Neonatal rat cardiomyocytes</td>
<td>↑phosphorylation of Akt and mTOR, ↓autophagy levels</td>
<td>mTOR signaling in the PI3K-Akt pathway</td>
<td>[86]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>H9c2 cardiomyocytes</td>
<td>↑nuclear translocation of Nrf2, maintaining the structure and function of mitochondria</td>
<td>Nrf2, mitochondrial dynamics</td>
<td>[85]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Parishin</td>
<td>H9c2 cardiomyocytes</td>
<td>↑cleaved-caspase-3, cytochrome c, and Bax in the cytoplasm, ↑cytochrome c and Bcl-2 in the mitochondria</td>
<td>cleaved-caspase-3, cytochrome c, Bax, and Bcl-2</td>
<td>[85]</td>
</tr>
<tr>
<td>In vitro</td>
<td>Parishin</td>
<td>H9c2 cardiomyocytes</td>
<td>↓JNK1 phosphorylation levels, ↓c-jun and ATF-2 phosphorylation levels, ↓binding of 14-3-3 to Bax</td>
<td>phosphorylation levels of JNK1, c-jun, ATF-2 and 14-3-3</td>
<td>[85]</td>
</tr>
<tr>
<td>Myocardial I/R</td>
<td>Gastrodin</td>
<td>Cardiac microvascular endothelial cells and myocardial I/R animals</td>
<td>↓NLRP3/caspase-1 pathway, ↓IL-1β, ↓myocardial infarct size, ↓inflammatory cell infiltration, ↓capillary formation</td>
<td>NLRP3/caspase-1 pathway, IL-1β</td>
<td>[93]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>SD rats</td>
<td>↓ATG5 expression, ↓autophagy</td>
<td>miR-30a-5p</td>
<td>[94]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>SD rats</td>
<td>↓active caspase-3 and Bax, ↑Bcl-2, ↑IL-10, ↓autophagic flux</td>
<td>active caspase-3, Bax, Bcl-2, IL-10</td>
<td>[95]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>C57BL/6 mouse</td>
<td>↓calcium load</td>
<td>AMPK phosphorylation, mTOR dephosphorylation calcium-transporting ATPase, calcium phosphate</td>
<td>[97]</td>
</tr>
</tbody>
</table>
Table 1 Summary of targets or pathways of Gastrodia elata in cardiovascular diseases (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Drug</th>
<th>Test Model</th>
<th>Effect</th>
<th>Target or Pathways</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocarditis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro</td>
<td>Gastrodin</td>
<td>H9c2 cardiomyocytes</td>
<td>↑NF-κB and MAPKs activation, ↑expression of iNOS, COX-2, TNF-α and IL-6</td>
<td>NF-κB, MAPKs, iNOS, COX-2, TNF-α, IL-6</td>
<td>[101]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Mice with septic shock</td>
<td>↑expression of NLRP3, caspase-1, IL-1β and Baker, ↑expression of Bcl-2</td>
<td>NLRP3, caspase-1, IL-1β, Baker, Bcl-2</td>
<td>[102]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodia elata</td>
<td>Mice with viral myocarditis</td>
<td>↑brain natriuretic peptide, peak aortic flow velocity, aortic flow velocity integral</td>
<td>brain natriuretic peptide, peak aortic flow velocity, aortic flow velocity integral</td>
<td>[103]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodia elata</td>
<td>Mice with viral myocarditis</td>
<td>↑caspase-3 protein expression, ↓apoptotic signal transduction</td>
<td>caspase-3, apoptotic signal</td>
<td>[104]</td>
</tr>
<tr>
<td>Heart Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Mice of cardiac hypertrophy</td>
<td>↓heart size, heart weight, body weight, ↓IGF2/IGF2R expression, ↓cardiac hypertrophy</td>
<td>IGF2/IGF2R</td>
<td>[112]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Mice of cardiac hypertrophy</td>
<td>↓MHCβ and ANP, ↓MHCβ</td>
<td>MHCβ, MHCβ, ANP</td>
<td>[113]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Mice and cells of myocardial hypertrophy</td>
<td>↓SOCE, ↓STIM1 and Orai1</td>
<td>SOCE, STIM1, Orai1</td>
<td>[114]</td>
</tr>
<tr>
<td>In vivo</td>
<td>Gastrodin</td>
<td>Mice of myocardial hypertrophy</td>
<td>↓ERK1/2 signaling pathway, ↑GATA-4 activation</td>
<td>ERK1/2 signaling GATA-4</td>
<td>[115]</td>
</tr>
</tbody>
</table>

SD, Sprague-Dawley; AEG, aqueous extract of Gastrodia elata; Akt, protein kinase B; EEG, ethanolic extract of Gastrodia elata; HUVEC, human umbilical vein endothelial cell; mPTP, mitochondrial permeability transition pore; NO, nitric oxide; ROS, reactive oxygen species; TC, total cholesterol; ΔΨm, membrane potential of the mitochondria.

Figure 5 Mechanisms of gastrodin in the treatment of various cardiovascular diseases. VSMCs, vascular smooth muscle cell; ROS, reactive oxygen species; NO, nitric oxide.

In conclusion, Gastrodia elata also has certain research and development value in the management of cardiovascular diseases. This article hopes to expand the clinical application value of Gastrodia elata and its effective components by reviewing its pharmacological mechanisms in cardiovascular diseases, and also provides new ideas and evidence for the clinical application of cardiovascular diseases.

References

1. Patel NM, Stottlemeyer BA, Gray MP, Boyce RD, Kane Gill SL. A Pharmacovigilance Study of Adverse Drug Reactions Reported for Cardiovascular Disease Medications Approved Between 2012 and 2017 in the United States Food and Drug...

Submit a manuscript: https://www.tmjournals.com/tmr

117. Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional...