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Abstract
Background: Neuro-inflammation is regarded as one of the critical pathogenesis in
neurodegenerative diseases, which is characterized by the activated microglial cells.
Pectolinarin (Pec), a natural flavonoid that exists in many Chinese herbal medicines, has
been reported to have various biological activities. However, the effects and mechanisms on
neuro-inflammation are not clear. Methods: In this study, the inhibitory effects and
mechanisms of Pec on neuro-inflammation were investigated in the LPS-stimulated
microglial BV2 cells. BV2 microglial cells were treated with Pec or vehicle, followed by LPS.
Enzyme-linked immunosorbent assay, real-time quantitative PCR, nitric oxide and reactive
oxygen species assay, and western blot were performed to examine the effects of Pec on
neuro-inflammatory responses. Results: We showed that Pec significantly inhibited the
expression of tumor necrosis factor α and interleukin 6 in mRNA and protein levels induced
by LPS. Moreover, the production of nitric oxide, iNOS, reactive oxygen species, and COX-2
were suppressed by Pec in LPS-stimulated microglial BV2 cells. In addition, Pec inhibited
LPS-induced inflammation via nuclear factor kappa B signaling pathway, as evidenced by
the reduction of the phosphorylation of inhibitor of nuclear factor kappa-B kinase, the
degradation of IκBα, and the nuclear translocation of p65. Conclusion: Taken together, Pec
exhibited anti-inflammatory effects in LPS-stimulated microglial BV2 cells via nuclear factor
kappa B signaling pathway, which might provide therapeutic potential for
neuro-inflammation and neurodegenerative diseases.
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Background

Neuro-inflammation is a defense mechanism to multiple exogenous
stimuli and pathogens in the central nervous system [1]. It is regarded
as the pathogenesis of several neurodegenerative diseases, such as
Parkinson’s disease (PD) and Alzheimer’s disease (AD) [2–4].
Microglia, the main immune defense cells, constitute 10–15% of the
glial cell population in the brain, which play a vital role in the innate
immune response and represent the first line of defense against
invading pathogens and pro-inflammatory reactions [5–8].
In a resting stage, microglia survey the microenvironment in

real-time with their ramified processes and secrete various
neurotrophic factors to help the development and maintenance of
neuronal. When the microglia cells were activated, the shape of them
could be changed from highly ramified morphology into an ameboid
shape. In addition, a series of cellular and molecular events happened.
Microglia would secrete a high level of pro-inflammatory factors and
cytotoxic mediators, such as tumor necrosis factor alpha (TNF-α),
interleukin-6 (IL-6), nitric oxide (NO), COX-2 and iNOS [9].
Therefore, regulation of microglial activation might represent a
potential therapeutic strategy for neuro-inflammation.
Lipopolysaccharide (LPS) is a major component of the outer

membrane of Gram-negative bacteria, which is a strong stimulator of
microglial activation [10]. LPS recognizes and binds with LPS-binding
protein and glycosylphosphatidylinositol-anchored protein CD14,
interacts with toll-like receptor 4, and activates downstream signaling
pathway. Activated toll-like receptor 4 activates the NF-κB signal
pathway, which is the most frequently used to investigate the
mechanism of inflammatory responses in microglia [11]. In response
to external stimulation, IκB family members can be phosphorylated
and degraded, and the NF-κB moved from the cytoplasm into the
nucleus, leading to the expression of various pro-inflammatory
mediators [12].
Traditionally, Chinese herbal medicine has been widely used to

treat various diseases with little side effects, including
neurodegenerative diseases [13–17]. Pectolinarin (Pec) is a
glycosylated flavone that was first isolated from a known medicinal
Chinese herb, Linaria vulgaris subsp. chinensis (Bunge ex Debeaux) D.
Y. Hong. Pec has been widely reported due to its presence in many
Chinese herbs, such as Cirsium japonicum Fisch. ex DC., Kickxia
ramosissima (Wall.) Janch., Lantana camara L., and Picnomon acama
(L.) Cass. [18, 19]. Pec has a wide range of biological activities,
including anti-tumor, antioxidant, antiviral, anti-inflammatory,
anti-depressant, anti-diabetic, and hepatoprotective effects [20–24].
As for anti-inflammatory effects, previous studies have shown Pec
inhibited the acid-induced writhing in mice in a dose-dependent
manner, suppressed inflammation in fibroblast-like synoviocytes by
inactivating PI3K/Akt pathway [25, 26]. However, the effects of Pec

on neuro-inflammation are still largely unknown.
In this study, the anti-inflammatory effects of Pec in LPS-stimulated
murine microglial cell line BV2 were investigated, and the underlying
mechanisms were further elucidated.

Materials and methods

Materials
Pectolinarin was purchased from Shanghai Yuanye Bio-Technology
Co., Ltd. (Shanghai, China). LPS was obtained from Sigma Co., Ltd.
(St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium was
obtained from Hyclone Co., Ltd. (Shanghai, China). Fetal bovine
serum and penicillin-streptomycin (P/S) were supplied from Gibco
Co., Ltd. (Gaithersburg, MD, USA). COX-2, iNOS, p65, p-p65, IKKβ,
p-IKKα/β, IκB-α, GAPDH, lamin B1 antibodies, and relative secondary
antibodies were obtained from Cell Signaling Technology Inc. (Boston,
MA, USA).

Cell culture and treatment
Murine microglial cell line BV2 was provided by the National
Infrastructure of Cell Line Resource (Wuhan, China). BV2 cells were
cultured in Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum and 1% P/S in a humidified chamber under
37 °C and 5% CO2 atmosphere. In the subsequent experiments, the
cells were pretreated with the indicated concentrations of Pec for 1 h
prior to the addition of LPS.

Cell viability
Cell Counting kit (CCK8, Beyotime, Shanghai, China) was used to
detect cell viability in 96-well plates. Cells were plated in each well at
a density of 1 × 105 cells/mL and treated with Pec for 24 h. After
treatment, 10 μL of CCK8 was added into the cell culture medium, and
then the plate was incubated for 1 h at 37 °C. The plate was detected
for absorbance at 490 nm by a microplate reader, and the results were
calculated by the following Equation (1):
Viability = (A(experiment)− A(blank))/(A(control) − A(blank)) × 100% (1)

NO assay
Cells were firstly treated with Pec for 2 h and then stimulated by LPS
(1 μg/mL) for 24 h. Then, the cell supernatant was added in a new
96-well plate, mixed with equal volumes of Griess reagent I and II
(Beyotime, Shanghai, China), and then detected the absorbance at a
wavelength of 540 nm within 10 min. Sodium nitrite was used as a
standard in the assay.

Determination of ROS production
ROS production induced by LPS stimulation was determined with ROS
Assay kit (Beyotime, Shanghai, China) following the instruction. Cells
were treated and reacted with ROS detection reagents for 1 h. Cells
were washed with PBS and observed using fluorescence microscopy
(Leica Co., Ltd., Wetzlar, Germany).

Enzyme-linked immunosorbent assay (ELISA)
The BV2 cells were stimulated by LPS (1 μg/mL) with or without Pec
for 24 h, the cell supernatant was collected and centrifuged at 1,000
r/min for 5 min. Then, the supernatant was diluted with the sample
dilution buffer at the appropriate ratio. The levels of TNF-α and IL-6
were examined by using ELISA kit (Neobioscience Technology Co.,
Ltd., Shenzhen, China) according to the manufacturer’s instruction.

Real-time quantitative PCR (RT-PCR)
Cells were stimulated by LPS (1 μg/mL) with or without Pec for 6 h,
total RNA of the cells was extracted by using Trizol (Life Technologies
Co., Ltd., Shanghai, China) according to its protocol. Total RNA was
reverse-transcribed using an All-In-One RT master mix (Applied
Biological Materials Inc., Nanjing, China). Real-time quantitative PCR
was performed by using AceQ Universal SYBR® qPCR master mix
(Vazyme Biotech Co., Ltd., Nanjing, China) and an ABI 7500 sequence
system. The primer sequences are shown in Table 1.

Highlights
Pectolinarin inhibited the production of TNF-α and IL-6, NO, iNOS,
ROS, and COX-2 in LPS-stimulated microglial BV2 cells. The
phosphorylation of IKK, the degradation of IκBα and the nuclear
translocation of p65 were inhibited by pectolinarin.

Medical history of objective
Cirsium japonicum Fisch. ex DC., a traditional Chinese herb used
for nourishing blood (blood vomiting, blood in stools, blood in
urine and traumatic bleeding effects), eliminating carbuncles and
dispelling sores (anti-inflammatory, anti-bacterial and anti-oxidant
effects), is first derived from in Hong-Jing Tao’s “the Famous
Physician's Record” (summarized in the Wei and Jin dynasties,
220–450 C.E.). Pectolinarin is a natural glycosylated flavone that
exists in Cirsium japonicum species and has a wide range of
biological activities, including anti-tumor, antioxidant, antiviral,
anti-inflammatory, anti-depressant, and anti-diabetic effects.
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Western blot
After treatment, the cells were washed twice with cold PBS (pH 7.4)
and lysed by RIPA lysis buffer for 5 min. Then, the samples were
followed by centrifuge at 13,000 rpm for 10 min at 4 °C. Nuclear
proteins of BV2 cells were extracted with the nuclear/cytoplasmic
protein extraction kit (Beyotime, Shanghai, China). The supernatant
was collected, and concentrations were measured by Bradford assay
(Biorad Co., Ltd., Hercules, CA, USA). For western blot, proteins were
separated by electrophoresis on 10–15% SDS-PAGE and transferred to
a polyvinylidene fluoride membrane. The membranes were blocked
with 5% skim milk for 1 h at room temperature and incubated with
the indicated antibodies overnight at 4 °C. Subsequently, the
membranes were washed with TBST three times and incubated with
the secondary antibody for 1 h at room temperature. The protein
bands were visualized using High Sensitivity ECL kit (Wanlei bio,
Shanghai, China) by LuminesCent image analyzer (Amersham Imager
600, GE Healthcare, Little Chalfont, UK). Grayscale of each band was
performed using Image J software (NIH, Bethesda, MD, USA).

Statistical analysis
The experiment data were presented as mean ± SD. Statistical
analysis was carried out with one-way ANOVA followed by Turkey’s
test using GraphPad Prism 6.0. A P value < 0.05 was defined
statistically significant. All experiments were performed at least three

times.

Results

Effects of Pec on cell survival
Before determining the effects of Pec on anti-inflammation, we first
examined the cytotoxicity of Pec (Figure 1A) on BV2 microglial cells.
The effect of Pec on BV2 cell viability was evaluated by CCK8 assay.
BV2 cells were treated with vehicle (DMSO) or Pec (0.1, 1, 10, 50, 100
μM) for 24 h. As shown in Figure 1B, we found that Pec at the
indicated concentrations did not affect the viability of BV2 cells. The
results indicated that the concentrations selected for further study
were non-cytotoxic to BV2 cells.

Pec suppressed the production of TNF-α and IL-6 in
LPS-stimulated BV2 cells
Inflammatory cytokines such as TNF-α and IL-6 are involved in the
inflammatory process in LPS-induced BV2 cells. We investigated
whether Pec inhibited the secretion of TNF-α and IL-6. Pretreatment
with or without Pec (50 μM and 100 μM) for 1 h and then treat with
LPS (1 μg/mL), TNF-α and IL-6 expression was measured by RT-PCR.
As shown in Figure 2C, 2D, the mRNA expression of TNF-α and IL-6
was significantly inhibited by pretreatment with Pec. On the other
hand, the culture medium was collected to detect the protein level of

Table 1 Primer sequences

Genes Forward primers Reverse primers

GAPDH TCGGTGTGAACGGATTTGGC GCCGTTGAATTTGCCGTGAG
TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG
IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC

TNF-α, tumor necrosis factor α; IL-6, interleukin 6.

Figure 1 Effects of Pec on cell survival. (A) Chemical structure of Pec. (B) BV2 cells were stimulated with different concentrations of Pec for 24 h
and the cell viability was determined by CCK8 assay. All data were presented as means ± SD of three times.

Figure 2 Effects of Pec on the production of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-induced BV2 cells. (A, B) The protein levels
of TNF-α and IL-6 were determined by ELISA kits. (C, D) The mRNA levels of TNF-α and IL-6 were measured by RT-PCR. All data were presented as
the mean ± SD of three independent experiments. **P < 0.01 and ***P < 0.001 vs. LPS-treated group. LPS, lipopolysaccharide; TNF-α, tumor
necrosis factor α; IL-6, interleukin 6.
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TNF-α and IL-6 by ELISA. The results showed that Pec suppressed
LPS-induced production of TNF-α and IL-6 at the protein level in BV2
cells (Figure 2A, 2B).

Pec inhibited oxidative stress induced by LPS in BV2 cells
In addition to pro-inflammatory cytokines release, many oxidative
stress markers were also involved in inflammatory process in BV2 cells,
such as NO, inflammatory enzymes iNOS, ROS, and COX-2. LPS
significantly augmented NO and iNOS production, while Pec
treatment decreased the expression of NO and iNOS in BV2 cells
(Figure 3A–3C). Then, we investigated ROS production and COX-2
expression. As shown in Figure 4A, Pec significantly inhibited
LPS-induced ROS production. Pec also significantly reduced the
increase in COX-2 expression compared to LPS treatment (Figure 4B,
4C). These data indicated that Pec inhibited oxidative stress reactions
by reducing the production of NO, iNOS, ROS, and COX-2.

Pec inhibited LPS-stimulated inflammatory response via NF-κB
pathway
NF-κB plays a crucial role in the development of inflammation and
regulates the expression of inflammatory cytokines and mediators.
Thus, the effects of Pec on NF-κB pathway in LPS-induced BV2 cells
were investigated. As shown in Figure 5A–5C, pretreatment with Pec
inhibited the degradation of IκBa and the phosphorylation of IKKα/β
compared with the LPS-induced group. In addition, the level of p65

was measured by western blot. For the total protein of p65, LPS
stimulation increased phosphorylation of p65. Pretreatment with Pec
dramatically decreased the level of phosphorylated p65 (Figure 6A,
6C). For the nuclear translocation of p65, the level of p65 in the
nucleus was significantly elevated with the treatment of LPS, whereas
pretreatment with Pec obviously reduced the p65 nuclear
translocation (Figure 6A, 6B). These results suggested that Pec
inhibited inflammatory response in LPS-stimulated BV2 cells via NF-κB
signaling pathway.

Discussion

In recent years, several monomers have been indicated for their
potential neuroprotective effects in various neurodegenerative
diseases [27–30]. Pec is widely distributed in medicinal plants. It is
reported to have effects of antioxidant, anti-tumor, anti-cancer, and
antiviral. Moreover, Pec showed anti-inflammatory effects in animal
models, which resulted in potent inhibiting like-wise
carrageenan-induced mouse paw edema, arachidonic acid-induced
mouse ear edema, and passive cutaneous anaphylaxis [26]. However,
the effects of Pec on neuro-inflammation and the potential
mechanisms are not clear. In this study, we showed for the first time
an anti-inflammatory role of Pec on LPS-stimulated
neuroinflammation via NF-κB signaling pathway in microglial BV2
cells.

Figure 3 Effects of Pec on the production of NO and iNOS in LPS-induced BV2 cells. (A, B) The iNOS expression was determined by western
blot. GAPDH was used as an internal control. (C) The production of NO was measured by Griess reagents. All data were presented as the mean ±
SD of three independent experiments. **P< 0.01 vs. LPS-treated group. LPS, lipopolysaccharide; NO, nitric oxide.

Figure 4 Effects of Pec on the production of ROS and COX-2 in LPS-induced BV2 cells. (A) Representative pictures of ROS production (scale bar
= 100 μm). (B, C) The COX-2 expression was determined by western blot. GAPDH was used as an internal control. All data were presented as the
mean ± SD of three independent experiments. ***P < 0.001 vs. LPS-treated group. LPS, lipopolysaccharide.
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Figure 5 Effects of Pec on NF-κB signaling pathway in LPS-induced BV2 cells. Cells were pretreated with different concentrations of Pec for 1 h,
treated with 1 μg/mL LPS for 30 min. (A–C) IKKβ, IKKα/β phosphorylation, IκBα and GAPDH expression were determined by western blot. GAPDH
was used as an internal control. All data were presented as the mean ± SD of three independent experiments. **P < 0.01 and ***P < 0.001 vs.
LPS-treated group. LPS, lipopolysaccharide; IKK, inhibitor of nuclear factor kappa-B kinase.

Figure 6 Effects of Pec on NF-κB signaling pathway in LPS-induced BV2 cells. Cells were pretreated with different concentrations of Pec for 1 h,
treated with 1 μg/mL LPS for 30 min. (A–C) Total p65, p65 phosphorylation, nucleus p65 and Lamin B1 expression were determined by western
blot. The non-phosphorylated form of targeted protein and Lamin B1 were used as loading control. All data were presented as the mean ± SD of at
least three independent experiments. *P < 0.05 and ***P< 0.001 vs. LPS-treated group. LPS, lipopolysaccharide.

Microglia are one of the major immune cells in the central nervous
system and are responsible for resistance to infection, removal of
cellular debris and microbes, and maintenance of tissue homeostasis.
Microglia activation is a common feature of various
neurodegenerative diseases such as PD and AD [31, 32]. Accumulating
evidence suggests that over-activated microglial cells were the symbol
of neuro-inflammation [33]. It is reported that microglial cells can be
over activated by LPS and release a variety of inflammatory cytokines
[34]. Therefore, targeting the pro-inflammatory cytokines secreted by
microglial activation might be a promising therapeutic strategy to
prevent or relieve neuro-inflammation. In general, over-activated
microglial cells produce inflammatory cytokines such as TNF-α, IL-6,
and IL-1β [35]. In this study, the results showed that the expression of
TNF-α and IL-6 in LPS-stimulated microglial cells could be suppressed
with the pretreatment of Pec. Activation of microglial cells also
induces oxidative stress mediators such as iNOS, ROS, and COX-2. The
iNOS is a major source of NO generation, which has neurotoxicity
against complexes I and II in the respiratory chain and generates
various deleterious reactive molecules [36]. NO generation is reduced
with the decreasing of iNOS expression. In the present study, we
demonstrated that Pec inhibited LPS-stimulated the production of ROS
and reduced the expression of COX-2 and iNOS. These findings
indicated that Pec inhibited inflammatory cytokines expression and
oxidative stress reaction in LPS-stimulated microglial BV2 cells,

suggesting its potential role in the treatment of neurodegenerative
diseases such as PD and AD.
A number of signaling pathways have been reported to be involved
in neuro-inflammatory responses [37–39]. The NF-κB family of
transcription factors is specially considered to play an important role
in regulating the production of pro-inflammatory cytokines [40]. It is
reported that NF-κB signaling pathway could regulate the production
of TNF-α, IL-6, and IL-1β in LPS- or TNF-α-induced microglial cells.
Non-activated NF-κB binds to inhibitors of the IκBα protein family and
stays in the cytoplasm. With the LPS stimulation, NF-κB signaling
could be activated with the IκBα kinase (IKK) activation, and the
activated IKK would phosphorylate IκBα. Then, the IκBα dissociated,
and the enhanced phosphorylation or degradation resulted in the
downstream target p65 phosphorylation and translocation into the
nucleus, which is associated with the secretion of inflammatory
cytokines, such as TNF-α, IL-6, and IL-1β [41, 42]. In the present
study, we found that LPS could enhance IKK and p65 phosphorylation
and IκBα degradation. However, with the pretreatment of Pec, these
effects could be blocked, indicating that Pec inhibits the inflammatory
responses in LPS-stimulated microglial cells via NF-κB signaling
pathway.

Conclusions
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In conclusion, the present study demonstrated the neuro-protective
effects of Pec on inhibiting the expression of pro-inflammatory
cytokines and inflammatory mediators in LPS-stimulated microglial
cells via NF-κB signaling pathway. As a natural flavonoid, Pec might
provide a potential therapy for preventing and relieving the
progression of neuro-inflammatory diseases.
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