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Abstract
Pueraria Lobatae Radix (PLR), also known as kudzu root, is abundant in various of active
compounds. Among these compounds, isoflavones (puerarin, daidzein, genistein, etc.) is
extensive studied due to their extensive pharmacological properties. This review focuses on
the chemical compounds, pharmacological effects, action mechanisms and clinical studies of
the isoflavone in PLR to offer new insights for prospective research of PLR. Isoflavones in
PLR possessed multiple pharmacological effects, such as anti-inflammatory, anti-oxidation
and neuroprotection. Studies have shown that isoflavones are expected to be applied in
cardiovascular diseases, intestinal diseases, diabetes, liver disorders, and neurological
conditions. Although isoflavones derived from PLR exhibit therapeutic potential for treating
a variety of diseases, they may also lead to adverse reactions, such as gastrointestinal
discomfort, estrogen-like effects, hepatotoxicity and nephrotoxicity. Therefore, clinical
investigations should be carried out to ascertain the pharmacological actions of isoflavones
obtained from the laboratory and animal studies, ensuring their safety and effectiveness in
humans. More studies on developing advanced drug delivery approaches to improve the
bioavailability of isoflavones and their effectiveness, as well as exploring their precise
molecular and cellular mechanisms, will be useful in developing new drugs and novel
therapies.

Keywords: Pueraria Lobatae Radix; isoflavones; pharmacological effects; side effects; safety
and risks
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Introduction

Pueraria Lobatae Radix (PLR), commonly known as kudzu, is a
climbing plant native to East Asia and widely used in traditional
Chinese medicine [1]. PLR contained isoflavones, flavonoids,
triterpenoids and saponins, organic acids, polysaccharides and
alkaloids, among which isoflavones are the highest and are also the
active components of PLR. The isoflavones (puerarin, daidzein,
genistein, and tectoridin, etc.) have been extensively studied for their
potential benefits in cardiovascular diseases, diabetes, liver diseases,
neurological disorders. Recent research suggested that these
isoflavones executed their biological effects by influencing key cellular
signaling pathways, such as reducing the generation of inflammatory
mediators, protecting cells from oxidative damage, and regulating
blood sugar levels [2], and endocrine regulation. The molecular
structure of these isoflavones were similar with that of estrogen,
which could affect estrogen-related receptors, thereby providing
therapeutic potential for various diseases [3].
Despite isoflavones in PLR exerted various pharmacological

activities, the development of these isoflavones in clinical applications
also faced some challenges. The most significant ones included their
low bioavailability and potential safety issues. The low absorption and
metabolism efficiency of these isoflavones limited their effectiveness
and application scope. Advanced drug delivery systems such as
nanotechnology have been utilized to enhance the bioavailability of
these compounds [4]. Moreover, due to their estrogen-like effects,
there may be safety risks for specific populations, such as patients
with hormone-sensitive diseases [5]. To reduce the potential risks
caused by isoflavones from PLR, some clinical studies have been used
to validate their safety and efficacy, especially their potential
applications in human health and disease treatment [6].
The present review summarized the modern research progress on

the chemical compounds, pharmacological actions, side effects, and
clinical application of isoflavones from PLR. It offers overall
knowledge of isoflavones from PLR and some deficiencies were also
proposed, which could accelerate the further development of PLR
isoflavones related products. The whole plant and Chinese herbal

medicines of PLR were shown in Figure 1.

Materials and methods

The accessible literatures on isoflavones from PLR were obtained from
published materials of electronic databases, such as SCI finder,
PubMed, Wed of Science, Springer and Google Scholar. The relevant
information was also acquired from Chinese Pharmacopoeia and
Chinese herbal classic books. ChemDraw Ultra 20.0 software was used
to draw the chemical structures. Figdraw was utilized to draw the
action mechanisms of isoflavones in nervous system, cardiovascular
system and intestinal tract diseases.

Ingredients of Pueraria mirifica isoflavones

Composition and contents
Currently, more than 100 types of isoflavones have been isolated in
PLR, mainly including puerarin, daidzein, tectoridin, and irisolidone
[7] (see Table 1 and Figure 2). The types and contents of isoflavones
varied significantly among different plants parts of PLR. The roots and
leaves are main sources of isoflavones, and the total contents of
isoflavones decreased in the following order: roots > leaves > stems
> flowers. The content of puerarin in roots was the highest, while the
contents of irisolidone and daidzein were relatively high in leaves [8].
Moreover, the growth environment also significantly affected the
contents and types of PLR isoflavones [9]. Some studies have
indicated that puerarin, irisolidone, and daidzein and their derivatives
were the main PLR isoflavones [9].

Structures
Isoflavones in PLR are a class of plant estrogens, most of which are
glycosidic compounds with a 3-phenylchroman structure [10]. These
isoflavones had a basic skeleton of C6-C3-C6 combined with glycone or
glycoside to form phenolic compounds. Isoflavone glycosides have a
large π-π conjugated system [11, 12], forming an approximately
planar structure in space. The types of isoflavones in PLR was
extremely complex, containing many different isomers.

Figure 1 Whole plant and Chinese herbal medicines of Pueraria lobata. (A) Whole plant of Pueraria lobata. (B) Chinese herbal medicines of
Pueraria lobata.

Table 1 Compound, molecular formula, CAS and logp of major isoflavones in PLR

NO Compound Molecular formula CAS Logp Reference
1 Puerarin C21H20O10 3681-99-0 –0.67 [12]
2 Daidzein C15H10O4 486-66-8 2.78 [13]
3 Genistein C15H10O5 446-72-0 2.96 [14]
4 Prunetin C16H12O5 552-59-0 3.53 [15]
5 Genistein-7-O-β-D-glucoside C21H20O10 529-59-9 0.79 [16]
6 Daidzin C21H20O9 552-66-9 0.45 [17]
7 Kakkalide C28H32O15 58274-56-9 1.62 [18]
8 Glycitein C16H12O5 40957-83-3 2.57 [19]
9 Glycitin C22H22O10 40246-10-4 0.16 [20]
10 Tectoridin C22H22O11 611-40-5 0.29 [21]
PLR, Pueraria Lobatae Radix.
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Table 1 Compound, molecular formula, CAS and logp of major isoflavones in PLR (Continued)

NO Compound Molecular formula CAS Logp Reference

11 Tectorigenin C16H12O6 548-77-6 2.54 [22]

12 Formononetin C16H12O4 485-72-3 2.96 [23]

13 3’-Hydroxyl daidzein C15H10O5 485-63-2 2.58 [24]

14 3’-Methoxy daidzein C16H12O5 21913-98-4 2.54 [15]

15 3’-Methoxypuerarin C22H22O10 117047-07-01 1.72 [25]

16 3’-Hydroxypuerarin C21H20O10 117060-54-5 1.75 [15]

17 Isoformononetin C16H12O4 486-63-5 3.17 [25]

18 Irisolidone C17H14O6 2345-17-7 2.88 [26]

19 4;-methoxypuerarin C22H22O9 92117-94-7 2.14 [27]

20 BiochaninA C16H12O5 491-80-5 3.14 [28]

21 Ononin C22H22O9 486-62-4 0.63 [29]

22 NeopuerarinA C21H20O9 1150314-34-3 0.90 [30]

23 NeopuerarinB C21H20O9 1150314-39-8 0.90 [30]

24 8-prenyldaidzein C20H18O4 135294-00-8 4.87 [28]

25 Lupiwighteone C20H18O5 104691-86-3 5.05 [31]

26 Wighteone C20H18O5 51225-30-0 5.05 [32]

27 6,7,4’-Trihydroxyisoflavone C15H10O5 17817-31-1 2.17 [33]

28 IristectorigeninA C17H14O7 39012-01-6 2.59 [34]

29 Puerarin-6”-O-xyloside C26H28O13 114240-18-5 1.48 [35]

30 Mirificin C26H28O13 103654-50-8 1.21 [36]

31 Mirificin-4’-O-glucoside C32H38O18 168035-01-6 –1.44 [37]

32 Puerarin-4’-O-glucoside C27H30O14 117047-08-2 –0.70 [38]

33 Genistein-8-C-glucoside C21H20O10 66026-80-0 0.09 [39]

34 6”-O-malonyl genistin C24H22O13 51011-05-3 2.22 [40]

35 Kakkalidone C23H24O11 6009-88-7 0.36 [41]

36 6”-O-xylosyl-glycitin C27H30O14 231288-18-9 1.37 [22]

37 Tectorigenin-7-O-xylosylglucoside C27H30O15 231288-19-0 1.44 [42]

38 Daidzein-4’, 7-diglucoside C27H30O14 53681-67-7 –2.20 [43]

39 Ambocin C26H28O14 108044-05-9 1.47 [35]

40 8-O-methyl retusin C17H14O5 37816-20-9 2.32 [44]

41 Fujikinetin methyl ether C18H14O6 2746-85-2 3.44 [45]

42 Calycosin 7-O-glucoside C22H22O9 20633-67-4 0.09 [46]

43 Psi-Tectorigenin C16H12O6 13111-57-4 2.22 [47]

44 Pseudobaptigenin C16H10O5 90-29-9 3.06 [48]

45 5-Hydroxypseudobaptigenin C16H10O6 40624-03-1 3.24 [15]

46 4’,7-Dimethoxyisoflavone C17H14O4 1157-39-7 3.43 [25]

47 Isoflavone C15H10O2 574-12-9 3.58 [49]

48 3’-methoxy-daidzin C22H20O10 200127-80-6 0.22 [25]

49 Neobavaisoflavone C20H18O4 41060-15-5 4.87 [50]

50 Corylin C20H16O4 53947-92-5 4.45 [51]

51 IristectorigeninB C17H14O7 86849-77-6 2.17 [52]

52 Puerarone C20H16O5 116107-15-4 5.09 [53]

53 Parvisoflavanone C17H16O7 49776-79-6 2.87 [54]

54 Calycosin C16H12O5 20575-57-9 2.41 [55]

55 Maximaisoflavone J C21H20O4 16277-87-5 5.32 [56]

56 Artocarpanone C16H14O6 520-25-2 2.65 [57]

57 Piscerythrone C21H20O7 6506-96-3 4.76 [58]

58 Dihydrodaidzein C15H12O4 17238-05-0 2.79 [59]

PLR, Pueraria Lobatae Radix.
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Figure 2 Chemical structures of major isoflavones in Pueraria Lobatae Radix

Quantitative analysis
Currently, high performance liquid chromatography and liquid
chromatography coupled with mass spectrometry techniques have
been utilized to determine the contents of isoflavones in PLR.
Ultra-high performance liquid chromatography has been used for the
simultaneous quantification of major isoflavones in PLR within 10
minutes [19]. To increase the extraction efficiency of isoflavones,
subcritical water extraction has been used to extract the isoflavones
from PLR, which was a greener and more sustainable extraction
approach [60]. Moreover, proton nuclear magnetic resonance was
used to effectively quantify seven isoflavones, providing a reliable
method for the standardization of these isoflavones in PLR [61].

Biosynthesis

Roots and stems are the major sites of isoflavone biosynthesis in PLR
[62]. Isoflavone biosynthesis is a branch of phenylpropanoid
metabolism that occurs through the hybridization pathway of
phenylpropanoid and isoflavones [63]. The 2-hydroxylation of the C
ring of flavanones could be catalyzed by 2-HIS, and the products were
then catalyzed by 2-HID to yield isoflavone products, such as daidzein
or genistein [23]. 2-HIS is a membrane-associated cytochrome P450
enzyme belonging to the CYP93C subfamily, and it is the first key
enzyme catalyzing the synthesis of isoflavones [24]. Puerarin is
biosynthesized by hydroxylation at the C-2 position via the
phenylpropanoid pathway, generating its isoflavone backbone [64].
Transcription factors play an important role in the biosynthesis of
secondary metabolites [63]. The regulation of transcription factors of
flavonoids has been extensively studied in many plant species, while
the role of isoflavone biosynthesis in PLR is seldom reported [64].
Shen et al. found that the transcript levels of the PlMYB1, PlHLH3-4
and PlWD40-1 genes were closely related to the isoflavone
biosynthesis in different tissues of PLR [24, 64]. The biosynthesis
pathway of isoflavone in PLR was shown in Figure 3.

Pharmacological studies

Nervous system disease

Isoflavones in PLR, especially puerarin, play a neuroprotective role by
inhibiting oxidative stress, cytotoxicity, and apoptosis [65]. The
neuroprotective effects of PLR isoflavones were shown in Table 2.
Transient receptor potential melastatin-related 2 is an ion channel that
regulates pyramidal neuron death in the CA1 region of the
hippocampus. The TRPM2/NMDAR pathway was blocked in neurons
of bilateral common carotid artery occlusion rats treated with
puerarin, preventing the overproduction of reactive oxygen species
[66]. Puerarin reduced the blood-brain barrier damage, and the
possible mechanism was the inhibition of the
NLRP3/Caspase-1/GSDMD-mediated classical pyroptosis pathway
[67]. Moreover, rhodopsin in PLR could activate the BDNF-TRK
pathway and increase neuronal cell viability and proliferation [30].
Isoflavones in PLR could exert antidepressant effects through
increasing protein expression of AKT1 and FOS, and decreasing
protein expression of CASP3, STAT3 and TNF-α [68]. The
antidepressant effects observed in the treatment of ovariectomy mice
with puerarin may be related to the inhibition of
hypothalamic-pituitary-adrenal axis or the up-regulation of BDNF
mRNA expression in the hippocampus [69]. Mechanisms of
isoflavones in nervous system have been summarized in Figure 4.

Cardiovascular system
Numerous evidences indicated that isoflavones in PLR had excellent
effects in cardiovascular system. Puerarin promoted cardiac function
and prevented myocardial infarction by regulating the PPAR-γ/NF-ᴋB
and Akt/HO-1 pathways, thereby decreasing the cardiovascular risk
[1, 3]. Furthermore, puerarin protected from
ischemia/reperfusion-induced myocardial injury by enhancing VEGFA
and Ang-1, so as to reverse cardiovascular fibrosis through the
Nrf2/ROS pathway [70]. Iron death has been discovered as a new cell
death mechanism of the failing heart, and some studies have
demonstrated that puerarin could counter iron death caused by
cardiovascular diseases [5]. Aside from puerarin, other isoflavones
derived from PLR also played a crucial role in the cardiovascular
system. Daidzein had anti-inflammatory and antioxidant properties,
which could maintain the vascular homeostatic state [7]. Mirificin
could diminish oxidative injury to cardiovascular tissues, it has
potential to reduce blood pressure and enhance the heart’s function
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[71]. The cardiovascular effects of isoflavones in PLR were
summarized in Table 3.
Isoflavone in PLR could exert anti-inflammation, anti-oxidation,

anti-apoptotic, and inhibiting iron death effects through regulating a
variety of important cardiac vasculature pathways, thus enhancing
heart function. Mechanisms of PLR isoflavones in cardiovascular
system were shown in Figure 5.

Intestinal tract diseases
Recent studies have shown that the isoflavones in PLR showed
benefits for intestinal function and microecology. Isoflavones exerted
their effects on the gut diseases through diverse mechanisms. The
effects of isoflavones in PLR against intestinal tract diseases were
listed in Table 4. A few PLR isoflavones exerted significant effects on
gut metabolism, such as puerarin, genistein, and daidzin.

Figure 3 The biosynthesis pathway of isoflavone in PLR. PLR, Pueraria Lobatae Radix; CHS, Chalcone Synthase; CHR, Chalcone Reductase; CHI,
Chalcone Isomerase; OGT, O-GlcNAc transferase.

Table 2 The neuroprotective effects of major isoflavones in Pueraria Lobatae Radix

Component Dose Animal models Effects Mechanism Ref

Puerarin
20, 40 and
80 mg/kg

Early brain injury rat
model

Reducing neurological dysfunction,
and oxidative stress injury

Regulating AMPK/PGC1α/Nrf2-
signaling pathway [72]

Daidzein 50 mg/kg High-fat diet rat model
Increasing SGZ cell proliferation
and educing hippocampal apoptosis
and gliosis

Regulating caspase 3, FosB, GFAP
and Iba1

[73]

Daidzein
10 and 20
μM

LPS induced BV2 cells
model Exerting neuroprotective effects

Preventing against mitochondrial
oxidative stress [74]

Daidzein 200 mg/kg High-fat diet rat model Neuroprotective effects of DZ in the
cerebellar layers

Activating TrkB signaling event [75]

Formononetin 30 mg/kg Male Sprague Dawley
rats

Alleviating the neurological deficit
and the pathological state of brain
tissues and reducing the volume of
cerebral infarction

Regulating JAK2/STAT3 signaling
pathway

[76]

Formononetin 10, 30
mg/kg

Traumatic brain injury
rat model

Exerting the neuroprotective and
antioxidant effects against TBI

Regulating Nrf2-dependent
antioxidant pathway

[77]

Formononetin 25 mg/kg
Chronic inflammatory
pain mouse model

Anxiolytic effect
Inhibiting microglia activation by
NF-ᴋB p65 signaling pathway

[78]

Genistein
15 and
30g/kg

Ovariectomized rat
model

Reducing the neural apoptosis

Attenuating oxidative stress, lipid
peroxidation and the
mitochondria-mediated apoptotic
pathway

[79]

Daidzin
1, 5, 10
mg/kg

Pentylenetetrazole-ind
uced mice model

Antioxidant and anti-epileptic
properties

Inhibiting VEGF signaling pathway [80]

Tectorigenin
5, 10
mg/kg

LPS induced BV2 cells
model

Exerting anti-neuroinflammatory
activity

Suppressing NF-ᴋB/ERK/JNK-
related signaling pathways

[81]

Tectorigenin 25, 50 and
100 μM

Rat C6 astroglioma
cells

Inhibiting oxidative stress Regulating HO-1/NQO1 signaling
pathways

[82]
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Figure 4 Mechanisms of major isoflavones actions in nervous system. JAK, janus kinase; STAT, recombinant signal transducer and activator of
transcription 1; IRF, interferon regulatory factor; ERK, extracellular regulated protein kinases; JNK, c-Jun N-terminal kinase; p38,
mitogen-activated protein kinase; NF-ᴋB, nuclear factor kappa-B; NLRP3, NOD-like receptor thermal protein domain associated protein 3; CASP1,
caspase1; GSDMD, gasdermin D; HO-1, heme oxygenase-1; NQO1, NAD(P)H quinone oxidoreductase 1; Nrf2, nuclear factor erythroid-2-related
factor 2; Keap1, kelch-like ECH-associated protein 1; ER, estrogen receptor; ERE, estrogen response element; VEGF, vascular endothelial growth
factor; HIF-1α, hypoxia inducible factor-1; TRPM2, transient receptor potential melastatin 2; BCL-2, B-cell lymphoma-2; SMAC, second
mitochondria-derived activator of caspases; BAK, recombinant Bcl2 antagonist/killer; ADPR, ADP-ribosylation; PRAP, proline-rich acidic protein;
PARG, eukaryotic poly ADP ribose glycohydrolase. The figure was created by Figdraw (www.figdraw.com).

Table 3 The cardiovascular effects of major isoflavones in Pueraria Lobatae Radix

Component Dose Effects Mechanism Ref

Puerarin 100 mg/kg
Protecting against sepsis-induced
myocardial injury

Exerting cardioprotective effects by attenuating
inflammation and oxidative damage [83]

Puerarin 60 mg/kg
Having a promising potential for
treating chronic heart failure

Increasing the expression of PPARα and its downstream
target genes GLUT4 and CD36 [84]

Puerarin 50, 100 and 150
mg/kg

Reducing myocardial fibrosis,
inhibiting mitochondrial damage and
improving myocardial contractile
function

Inhibiting the activation of p38MAPK and its
downstream activation by Na+/H+ exchange isoform 1

[85]

Daidzein 5, 10 mg/kg
Attenuating endothelium-intact
aortas

Regarding oxidative stress markers, daidzein treatment
attenuated the increased malondialdehyde content and
reduced activity of superoxide dismutase

[86]

Daidzein 10 mg/kg
Treating doxorubicin-induced heart
failure

Ameliorating cardiac inflammation and fibrosis, cardiac
apoptosis, oxidative stress and cardiac energy imbalance [87]

Daidzein 10 μM to 100 μM Improvingmyocardial infarction-induced
cardiac dysfunction and cardiac fibrosis

Reducing TGF-β1-induced cardiac fibroblast activation
by regulating the TGF-β1/SMAD2/3 signaling pathway

[88]

Formononetin 10 mg/kg
Attenuating the development of
atherosclerosis

Regulating the interplay between KLF4 and SRA [89]

Formononetin
10, 30 and 100
μmol Decreasing the arterial pressure Regulating NO release and Ca2+ channels [90]

Formononetin 0.5, 1, 2, 5, 8 and
10 μM

Exhibiting a protective effect on
HUVECs

Increasing vascular endothelial growth factor and
p-ERK1/2 expression levels

[91]

Genistein 1 mg/kg
Rescuing pulmonary vascular
remodeling

Downregulating the estrogen receptor-β expression [92]

Genistein 5 and 25 mg/kg Attenuating myocardial fibrosis in
type 1 diabetic rats

Inhibiting the TGF-β1/Smad3 signaling pathway and
regulating collagen expression in dilated
cardiomyopathy

[93]

Daidzin 60 μM
High glucose-induced cardiomyocyte
injury Inhibiting the activities of ALDH2 [94]

Tectorigenin 0.1, 0.2, 0.5, 1
and 10 μmol/L,

Protecting HUVECs from
H2O2-induced oxidative stress injury

Activating the PI3K/Akt pathway [95]

Tectorigenin 50 mg/kg
Improving cardiac fibrosis and
cardiac function in diabetic
cardiomyopathy mice

Upregulating the phosphorylation of adenosine
5‘-monophosphate-AMPK by preventing the
ubiquitination of AdipoR1

[96]
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Figture 5 Mechanisms of PLR isoflavones in cardiovascular system. PPAR, peroxisome proliferator-activated receptors; IGF, insulin-like growth
factor; Shc, Src homology 2 domain containing; Grb2, growth factor receptor-bound protein 2; SOS, son of sevenless; RAS, rat sarcoma; MEK,
mitogen-activated protein kinase; RAF, raf protein kinase; ERK-1/2, mitogen-activated protein kinase; NF-B, nuclear factor kappa-B; VEGF, vascular
endothelial growth factor; GPCRs, G protein-coupled receptors; L-Arg, arginine; SMAD, mothers against DPP homolog; JNK, c-Jun N-terminal
kinase; ALDH2, aldehyde dehydrogenase; TGF-β, transforming growth factor-β; AKT, proteinkinase B; mTOR, mammalian target of rapamycin;
S6K1, ribosomal protein S6 kinase beta-1; 4EPB, 4E-bind-ing protein 1; IL-1, interleukin-1β; IL-6, interleukin-6; TNF-α, transforming growth
factor-α; PI3K, phosphatidylinositol 3-kinase. The figure was created by Figdraw (www.figdraw.com).

Table 4 The intestinal effects of major isoflavones in Pueraria Lobatae Radix

Component Dose Effects Mechanism Reference

Puerarin 10, 50 mg/kg
Preventing the breakdown of barrier
integrity Increasing levels of tight junction proteins [97]

Puerarin 200 mg/kg Relieving ulcerative colitis Increasing the levels of SCFAs [98]

Puerarin 100 mg/kg
Reversing the impairment of the
intestinal caused by influenza virus
infection

Reducing the levels of TLRs and inflammatory
factors in the intestines and attenuating
inflammatory damage

[99]

Daidzein 12.5–200 μM
Resisting intestinal epithelial barrier
injury Suppressing the PI3K/AKT and P38 pathways [100]

Daidzein 50 mg/kg
Protecting from intestinal
ischemia–reperfusion injury Reducing caspase-6 expression [101]

Daidzein 5 and 10 mg/kg Inhibiting colon cancer
Inhibiting the p-ERK/ERK and p-AKT/AKT
pathways

[102]

Formononetin 25, 50 and 100 mg/kg Suppressing gastric ulcer Inhibiting NF-ᴋB signaling pathway [103]

Formononetin 50, 250, and 500
mg/kg

Exerting gastroprotective effect Decreasing gastric secretion volumes and
increasing mucus production

[104]

Formononetin 10, 30, 50, 80, and
100 μM

Inhibiting the growth and
aggressiveness of GC cells

Reducing the levels of miR-542-5p [105]

Genistein 140 mg /kg Preventing colon cancer Reducing the mRNA expression of COX2,
TNF, and FRAT-1

[106]

Genistein 0.01–50.00 μmol/L
Inhibiting the contractile activity of
gastrointestinal smooth muscle

Activating α-adrenergic receptors, NO and
cAMP pathways, and KATP channels [107]

Genistein 100 mg/kg
Protecting against acetic
acid-induced ulcerative colitis

Upregulating the INF-γ/JAK1/STAT1 and
INF-γ /TLR-4/NF-ᴋB signaling pathways [108]

Irisolidone 20 or 50 mg/kg Attenuating ethanol-induced gastritis Inhibiting IL-8 secretion and NF-ᴋB activation [109]
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Puerarin played significant roles in the gut diseases mainly through
three probable mechanisms. Firstly, puerarin significantly altered the
gut flora by increasing the Akkermansia muciniphila, so as to achieve
anti-inflammatory and anti-obese benefits [110]. Puerarin also
strengthened the intestinal barrier functions by increasing the
overexpression of Muc2 and ZO-1 [111]. Furthermore, puerarin could
inhibit the expression of various inflammatory cytokines in the gut
such as TNF-α and IL-6, thus further strengthening the gut [112].
These findings make puerarin a potential natural adjuvant for gut
pathologies prevention.
Genistein could undergo methylation and hydroxylation reactions

to produce multiple active metabolites [64]. These metabolites have
obvious physiological activities, such as antithrombotic and
antiallergic effects. For example, genistein metabolites played
essential roles in platelet aggregation and immune response [113].
Genistein-related metabolites could also influence intestine cell
proliferation to improve the intestinal health via activating the
estrogen-related pathway [114]. These findings have shown that the
metabolic transformation of Genistein could maintaining gut health.
Daidzein enhanced the integrity of the intestinal epithelial barrier

by upregulating the expression of tight junction proteins like ZO-1,
occluding, and claudin-1, while also dampened the inflammatory
response through inhibiting PI3K/AKT and P38 MAPK pathways
[100]. Moreover, daidzein have been discovered to enhance intestinal
mucosal barrier function by boosting the expression of antioxidant
and anti-inflammatory factors [115]. Mechanisms of PLR isoflavones
in intestinal diseases were summarized in Figure 6.

Antitumor
Various biological pathways are involved in the mechanisms of PLR
isoflavones for the treatment of tumors. Isoflavones in PLR
significantly suppressed the proliferation of human breast cancer cells
by enhancing mitochondria-dependent and non-dependent apoptotic
pathways [6]. The isoflavones in PLR also possessed potential
anti-tumor activity by downregulating the levels of TNF-α and IL-6
[9]. Puerarin obviously reduced the oxidative and inflammatory

processes, thereby protecting from liver tumors [116].
3’-methoxyneopuerarin A and 3’-methoxyneopuerarin B, two new
isoflavones in PLR, exerted their antitumor effects through activating
the apoptotic pathway, suppressing the inflammatory responses and
oxidative stress [31]. Thus, these studies indicated that isoflavones in
PLR had the potential application in cancer treatment.

Diabetes
The therapeutic effects of PLR isoflavones on diabetes were involved
with several molecular mechanisms, including the promotion of
pancreatic β-cell division and the reduction of cell apoptosis, leading
to the normal insulin secretion. The treatment effects were closely
related to the activation of cAMP/PKA signaling pathway, which
could increase cellular response to insulin [117]. Isoflavones in PLR
also prevented diabetes-induced inflammation and oxidative stress
through anti-inflammatory and antioxidant activities, thereby
protecting the pancreas islet cells [118]. Moreover, these isoflavones
could enhance gut health and relieve from diabetes through the
modulation of gut microbial composition [119]. These
multi-mechanisms were geared towards the potential value of PLR
isoflavones in diabetes.

Liver diseases
In recent times, isoflavones in PLR have exhibited favorable
pharmacological effects in liver ailments by influencing metabolic and
inflammatory pathways. Isoflavones in PLR, such as puerarin and
daidzin, could effectively regulate lipid and alcohol metabolism,
diminish lipid buildup and inflammation by activating AMP/AMPK
pathways, thereby mitigating liver damage [120]. The anti-diabetic
properties of these isoflavones also contributed to their efficacy in
treating non-alcoholic fatty liver disease. Lots of isoflavones in PLR
(puerarin, daidzein, genistein, and daidzein, etc.) exerted the obvious
liver-protection effects by inhibiting oxidative stress and
inflammatory response, as well as regulating liver function and lipid
metabolism [121]. These findings heightened the potential of PLR
isoflavones for the developments of novel hepatoprotective drug.

Figure 6 Mechanisms of major isoflavones actions in intestinal tract. Muc2, Mucin 2; ZO-1, zonula occludens-1; TNF-α, transforming growth
factor-α; IL-6, interleukin-6; PI3K, phosphatidylinositol 3-kinase; AKT, proteinkinase B; mTOR, mammalian target of rapamycin; S6K1, ribosomal
protein S6 kinase beta-1; 4EPB, 4E-bind-ing protein 1; NF-ᴋB, nuclear factor kappa-B; IL-1β, interleukin-1β; ERK, extracellular regulated protein
kinases; JNK, c-Jun N-terminal kinase; p38, mitogen-activated protein kinase; IKB, recombinant inhibitory subunit of NF Kappa B Delta; JAK,
januskinase; STAT, signal transducer and activator of transcription; IRF-9, recombinant interferon regulatory factor 9; ROS, reactive oxygen
species; TLR4, toll-like receptor 4. The figure was created by Figdraw (www.figdraw.com).
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Other diseases
Isoflavones in PLR, such as calycosin and daidzein, could suppress the
activity of tyrosinase (a key enzyme in the synthesis of melanin), thus
reducing skin aging and pigmentation [56]. These isoflavones
prevented ocular diseases (particularly macular degeneration) through
protecting retinal cells [122]. Puerarin has been demonstrated to
prevent osteoarthritis development through anti-inflammatory effects
[123].

Negative reaction/evaluation of safety

Although isoflavones in PLR showed potential in treating various
diseases, they also caused some adverse reactions, especially for
specific populations. These isoflavones in PLR may cause
gastrointestinal discomfort [61], liver toxicity [116], and drugs
interactions [124], affecting the efficacy and safety of medications.
Moreover, due to the phytoestrogen properties, PLR isoflavones at
high doses might influence hormonal balance and reproductive health
[125]. For individuals with kidney issues, high doses of these
isoflavones may exacerbate renal stress. Therefore, it was important to
consider these potential risks when using PLR isoflavones, and they
should be used under professional medical guidance.

Drug delivery systems

The drug delivery system for PLR isoflavones has significantly
promoted their bioavailability and therapeutic efficacy. The
glycosylation modification was critical for improving the solubility
and absorption of the isoflavones [126]. It also ensured the easier
solubility of the isoflavones and more efficient intestinal uptake [127].
Furthermore, the role of the gut microbiota in the system is
significant. The isoflavones could be metabolized into more active or
easier to absorb forms, thus enhancing pharmacological effects [60].
The above modifications could enhance bioavailability and reduce
toxicity of PLR isoflavones.

Pharmacokinetics in isoflavones

The PLR isoflavones, especially puerarin, exhibit widespread tissue
distribution. After intravenous injection of puerarin, it has been
detected in multiple organs, including the brain, heart, stomach,
lungs, intestines, and spleen [128]. Puerarin can cross the blood-brain
barrier and distribute in various regions of the brain, such as the
hippocampus, cerebral cortex, and striatum, where it exerts
neuroprotective effects [129]. The brain penetration index
(AUCbrain/AUCplasma) for puerarin, 3’-Methoxypuerarin, daidzein, and
daidzein-8-C-apiosyl-glycoside were 9.29%, 7.25%, 11.96%, and
4.21%, respectively [130]. Compared to other isoflavones, puerarin
can relatively quickly cross the brain and exert its effects. Moreover,
puerarin can also cross the placental barrier and maintain high
concentrations in fetal plasma [131]. After oral administration,
puerarin reached a peak concentration (Cmax) in the blood of
approximately 140–230 μg/L within 1 hour, with an absolute oral
bioavailability of 7% [132]. Glucuronidation related metabolites
(puerarin-7-O-glucuronide, puerarin-4’-O-glucuronide, etc.) are the
major metabolites of puerarin,), and these metabolites could be easily
excreted through urine and feces [133]. Although these isoflavones
can cross the blood-brain barrier, their distribution in the brain is
quite limited.

Discussion and future perspectives

The isoflavones in PLR have been widely studied for their potential
benefits in treating cardiovascular diseases, diabetes, liver diseases,
neurological disorders. Up to date, more than 100 isoflavones have
been identified from PLR. Among the various parts of PLR, the roots
contained the highest concentration of puerarin, while the leaves had
relatively high levels of irisolidone and daidzein. Moreover, the

isoflavones contents in PLR was significantly influenced by its growing
environment. Isoflavones are a type of plant estrogen, primarily
composed of glycosidic compounds with a 3-phenylchroman structure.
This structure possessed a fundamental C6-C3-C6 skeleton that
combined with glycone or glycoside to form phenolic compounds. PLR
contained a variety of active ingredients, brought great challenges for
the qualitative and quantitative analysis of isoflavones in PLR. Modern
chromatographic techniques (ultra-high performance liquid
chromatography, ultra-high performance liquid chromatography-mass
spectrometry, etc.) have significantly improved the quantitative
analysis of isoflavones, providing greater accuracy and efficiency in
measuring the concentration of these bioactive compounds.
Isoflavones in PLR had multiple effects (neuroprotection,
anti-tumor, heart-protection, etc.) by inhibiting oxidative stress,
inflammation and apoptosis. Puerarin prevented myocardial infarction
by regulating the PPAR-γ/NF-ᴋB and Akt/HO-1 pathways. Daidzein
played an essential role in reducing blood pressure and protecting
heart. Daidzein was considered a powerful isoflavone due to its
excellent anti-inflammatory and antioxidant properties, which played
a crucial role in cardiovascular protection by reducing oxidative stress
and inflammation. Isoflavones also influenced the gut through various
mechanisms, such as promoting β-cell neogenesis and regulating the
short-chain fatty acid metabolism. Taken daidzein as an example, it
could upregulate the expression of tight junction proteins to mitigate
intestinal dysfunction and improve intestinal epithelial cells.
Remarkably, the isoflavones in PLR have notable pharmacological
effects on liver diseases, offering good therapeutic prospects. Puerarin
and other isoflavones could upregulate AMP-activated protein to
reduce liver damage and protect liver from alcohol-induced damage.
Isoflavones like puerarin, daidzein, genistein, and daidzein played a
crucial role in protecting the liver by regulating liver function and
lipid metabolism. As isoflavones in PLR had the similar structure of
estrogen, they may lead to some adverse reactions (especially at the
high dose of isoflavones in PLR), such as gastrointestinal discomfort,
liver toxicity and kidney toxicity. Thus, further in vivo and in vitro
experiments should be conducted to reduce the side effects from PLR
isoflavones. Research is needed to explore the most effective drug
formulations through developing new drug delivery systems.
Most PLR isoflavones studies focused on puerarin, daidzein, and
genistein, the other isoflavones’ pharmacological potential should also
be explored. Through these studies, the researchers could discover
new isoflavones for the treatment of diseases. The pharmacological
activity of isoflavones in PLR varied in different labs. PLR isoflavones
possessed considerable pharmacological actions in fundamental
researches, randomized, double-blind, placebo-controlled studies of
these active isoflavones should be further explored.

Conclusion

Recently, more than 200 compounds have been identified from PLR,
including isoflavones, terpenes, steroids, and coumarins, among which
isoflavones are the predominant type. The metabolism of
phenylalanine affected the formation of isoflavones. These isoflavones
possess a wide range of pharmacological activities and had potential
therapeutic effects on diseases in the nervous system, circulatory
system, digestive system, endocrine system, and others. Further
studies should focus on the medicine modifications and safety
evaluation of PLR isoflavones to promote the drug development of
PLR isoflavones related products.
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