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Supramolecular materials in life sciences: Recent advances and future directions
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The convergence of materials science and biotechnology has catalyzed
the development of innovative platforms, including nanotechnology,
smart sensors, and supramolecular materials, significantly advancing
the progress in the field of life sciences [1−7]. Among them,
supramolecular materials have garnered increasing attention in life
sciences owing to their distinctive self-assembly capabilities and
intelligent responsiveness [8−12]. Supramolecular materials can
self-assemble simple molecular units into polymer structures with
specific functions through non-covalent interactions (hydrogen
bonding, π–π stacking, hydrophobic interactions, electrostatic
interactions, etc.) to form micelles, vesicles, nanofibers, and
three-dimensional networks [13−22]. The self-assembly of
supramolecular materials exhibits a high degree of controllability and
can dynamically modulate their structure and function in response to
external stimuli, including temperature, pH, light, or chemical agents
[23−26]. This adaptability presents an innovative approach to
development in life sciences [27−30].
At present, supramolecular therapeutics have been widely used in

the field of life sciences. For example, supramolecular drug carriers
have been demonstrated to significantly enhance drug loading
capacity [31−33]. In addition, these carriers have multiple
stimuli-response capabilities, which can achieve precisely controlled
drug release in response to acid, light, or redox changes in abnormal
microenvironments such as tumors [34−36]. This property of
supramolecular materials significantly reduces the problems of low
drug solubility, uneven distribution, and side effects that exist in
traditional delivery systems [37−40]. Mao, Yu and co-workers
developed a novel mRNA cancer vaccine using supramolecular lipid
nanoparticles as a delivery platform to co-deliver tumor
antigen-encoding mRNA and TLR7/8 agonist (R848) to dendritic cells
(DCs) for enhanced antitumor effects (Figure 1a) [41]. Among them,
β-cyclodextrin (β-CD)-modified ionizable lipids (Lip-CD) incorporated
R848 into mRNA vaccine species through noncovalent host–guest
complexation, promoting DC maturation and antigen presentation
after vaccination, and greatly improving the stability and
bioavailability of R848 in biomedical applications. Furthermore, Chen
and co-workers reported that a supramolecular albumin nanoparticle
modified based on azocalix[4]arene was capable of simultaneously
delivering hydroxychloroquine (HCQ) and mitochondrial-targeting
Type І photosensitizer (SMNB) for hypoxic tumor therapy (Figure 1b)
[42]. The synergistic effects of HCQ-mediated mitophagy inhibition
and SMNB-induced reactive oxygen species overproduction disrupted
mitochondrial autophagic flux. This dual action amplified oxidative
stress and autophagic dysfunction, ultimately inducing tumor cell
apoptosis.
In addition, with the development of the concept of diagnosis and

treatment integration, the design of supramolecular imaging probes is
becoming increasingly multifunctional, which can be combined with
therapeutic drugs to form a “diagnosis and treatment integration”

platform. For example, by introducing fluorescence or magnetic
resonance imaging functional groups into supramolecular
self-assembled systems, probes with excellent biocompatibility and
targeting can be constructed [43−45]. These probes can generate
pronounced signals in specific pathological regions in vivo, thereby
achieving high-resolution imaging [46]. This platform not only
enables precise early diagnosis of diseases but also effectively treats
lesions through mechanisms such as targeted drug release or
photothermal and photodynamic therapies, thereby providing more
possibilities for precision medicine and personalized therapy [47−49].
For example, Zhou, Wang, Mao and co-workers designed a theranostic
metallacycle using perylene bisimide fluorophore and
tetraphenylethylene-based di-Pt(II) organometallic precursor as
building blocks (Figure 1c) [50]. Through fluorescence resonance
energy transfer, perylene bisimide fluorophore shifted the
characteristic optical signals to the near-infrared region. Then the
metallacycle molecule was self-assembled with GSH-responsive
macromolecule to form nanoparticles. These nanoparticles can target
tumor cells and tissues, enabling near-infrared imaging-guided in vivo
radiotherapy. In addition, Zhang, Lin and co-workers constructed
supramolecular fluorescent probes by combining cyanine dyes with a
β-CD polymer using a multivalent molecular self-assembly technique
(Figure 1d) [51]. The stability of supramolecular probes was
effectively improved by the multivalent host–guest interaction
between cyanine dyes and β-CD polymer. Furthermore,
supramolecular non-covalent interactions enable specific recognition
and signal transduction of biomolecules [52, 53]. By exploiting the
dynamic reversibility and molecular self-assembly properties of
supramolecular materials, highly sensitive and selective detection of
targets (e.g. proteins, nucleic acids and small molecule metabolites)
can be achieved through host–guest recognition mechanisms. This
involves specific binding between the macrocyclic host (such as
cyclodextrin, cucurbituril, calixarene or pillararene) and the target
molecule [54−60]. Recently, Tian and co-workers developed a
supramolecular fluorescent chemosensor by exploiting the host–guest
interaction between cucurbit[n]uril and naphthalimide-derived dye,
with acridine orange serving as the guest reference for quantitative
detection (Figure 1e) [61]. This supramolecular sensor can be used for
real-time imaging and quantification of norepinephrine dynamics in
mouse brain regions, achieving a temporal resolution of
approximately 190 ms. Supramolecular chemistry has also achieved
remarkable progress in bioinspired materials and regenerative
medicine [62]. Sun, Fu, Dong, Liu and co-workers developed a novel
DNA-based supramolecular hydrogel system for regeneration-directed
artificial skin, with a multilayered architecture designed to mimic the
natural skin matrix [63]. Li and co-workers constructed a hyaluronic
acid/β-cyclodextrin supramolecular assembly for sustained delivery of
insulin-like growth factor-1 and demonstrated controlled release
kinetics of bioactive insulin-like growth factor-1 [64].
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Figure 1 Applications of supramolecular materials in drug delivery (a, b), bioimaging (c, d), and supramolecular biosensors (e).
Reproduced with permission. Qi S, Zhang X, Yu X, et. al. Supramolecular Lipid Nanoparticles Based on Host–Guest Recognition: A New Generation
Delivery System of mRNA Vaccines for Cancer Immunotherapy. Adv Mater 2024;36(23):2311574. Copyright 2024, WILEY. Reproduced with
permission. Wang W, Yao SY, Luo J, et. al. Engineered Hypoxia-Responsive Albumin Nanoparticles Mediating Mitophagy Regulation for Cancer
Therapy. Nat Commun 2025;16(1):596. Copyright 2025, Springer Nature. Reproduced with permission. Ding Y, Tong Z, Jin L, et. al. An NIR
Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy.
Adv Mater 2022;34(7):e2106388. Copyright 2022, WILEY. Reproduced with permission. Ding Y, Tong Z, Jin L, et. al. An NIR Discrete Metallacycle
Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. Adv Mater
2022;34(7):e2106388. Copyright 2022, The American Association for the Advancement of Science. Reproduced with permission. Zhao Y, Mei Y,
Sun J, Tian Y, A Supramolecular Fluorescent Chemosensor Enabling Specific and Rapid Quantification of Norepinephrine Dynamics. J Am Chem Soc
2025,147(6):5025–5034. Copyright 2025, American Chemical society.
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Due to its dynamic, reversible and adaptive nature, supramolecular
chemistry is widely used in life sciences for the development of new
biological materials, drug delivery, disease diagnosis and treatment,
bionic materials, etc. The following is its core application direction
and typical cases (Table 1).
Despite significant advances in supramolecular materials for life

sciences, several challenges remain for their practical application
(Figure 2).
(1) Supramolecular systems rely on weak interactions, making them
vulnerable to interference from factors such as plasma proteins, ionic
strength, and enzymes, which may lead to dissociation or non-specific

binding. Thus, enhancing their stability in physiological environments
is an important area of future research.
(2) Although most supramolecular materials exhibit good
biocompatibility, their long-term toxicity, in vivo degradation, and
clearance mechanisms require further systematic assessment to ensure
clinical safety.
(3) Integrating multiple functionalities, such as drug delivery, imaging
and sensing into a single platform to achieve multifunctional synergy
remains a major challenge that requires further innovation in
molecular design and assembly regulation.

Table 1 Applications of supramolecular materials in the field of life sciences

Applications References

Cancer diagnosis [3, 5, 9, 13, 20]

Drug delivery [15, 19, 24, 32, 34, 37, 41−44, 50, 57, 58, 60, 61]

Bioimaging and treatment [18, 28, 45−47, 49, 59]

Biosensing and detection [48, 51−56]

Bionic materials [7, 16, 62−64]

Figure 2 Challenges of supramolecular materials in life sciences

In summary, supramolecular materials have promising
applications in life sciences due to their unique self-assembly and
smart response properties. By improving the stability and biosafety of
materials in vivo and realizing multifunctional synergistic effects,
supramolecular materials are expected to play a greater role in areas
such as precision medicine and intelligent diagnosis in the future.
Meanwhile, interdisciplinary collaboration will promote the deep
integration of supramolecular chemistry, materials science, and
biomedicine, accelerating their transformation from basic research to
clinical practice.
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