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Abstract

Acute lung injury (ALI) is a critical condition characterized by the destruction of
the alveolar-capillary barrier, infiltration of inflammatory cells, and an imbalance
in oxidative stress, with a mortality rate reaching 30%-40%. Acute respiratory
distress syndrome (ARDS) represents a severe form of ALL The pathogenesis of ALI
is complex, involving a cytokine storm, excessive production of reactive oxygen
species (ROS), and endothelial cell damage. Current treatments, such as mechanical
ventilation and glucocorticoids, offer limited efficacy and significant side effects,
highlighting the urgent need for the development of novel, targeted treatment
strategies. Recent studies have demonstrated that bioactive components of
Ganoderma lucidum spores (GLS), particularly Ganoderma lucidum polysaccharides
and triterpenes, possess significant pharmacological properties such as antioxidant,
anti-inflammatory, and immunomodulatory activities.In recent years, natural drug
delivery systems have gained considerable attention due to their biocompatibility
and functional diversity. Among these, GLS have emerged as promising carriers for
the treatment of ALI, owing to their unique physicochemical properties and
biological activity.The Ganoderma lucidum spore delivery system provides a
dual-treatment paradigm, functioning simultaneously as a natural carrier and an
active ingredient, which enhances its efficacy and safety for ALI therapy. Compared
to synthetic materials, it boasts superior biodegradability, lower immunogenicity,
and reduced preparation costs, making it well-suited for industrial-scale
production. Furthermore, its clinical translational potential has been demonstrated
in tumor adjuvant therapy, where it has shown promise in enhancing immune
function and improving the quality of life for chemotherapy patients.This article
reviews the potential applications and mechanisms of GLS as drug delivery carriers
in the treatment of ALL

Keywords: Ganoderma lucidum spores, drug delivery system, acute lung injury,
inflammatory response, therapeutic mechanism
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Highlights
1. Dual-action therapeutic platform: Ganoderma lucidum spores
function synergistically as both a natural drug delivery carrier and an
active pharmaceutical ingredient, offering a combined
bioactivity-and-delivery strategy for treating acute lung injury (ALI).
2. Superior carrier properties: Compared to synthetic materials like
PLGA, the spore-based system demonstrates better biodegradability,
lower immunogenicity, ideal particle size for lung deposition, and
potential for cost-effective industrial-scale production.
3. Multi-mechanistic efficacy: The bioactive components (e.g.,
polysaccharides, triterpenes) within the spores exert
anti-inflammatory, antioxidant, and immunomodulatory effects by
regulating key pathways such as NLRP3 inflammasome and
PI3K/Akt/mTOR, addressing the complex pathogenesis of ALI.

Medical history of objective
Ganoderma lucidum (Lingzhi), the source of Ganoderma spores,
was first recorded in the "Shennong Ben Cao Jing" (Shennong's
Classic of Materia Medica, approximately 206 BCE - 220 CE). Later,
in Li Shizhen's "Ben Cao Gang Mu" (Compendium of Materia
Medica, completed in 1578 CE), the medicinal properties of
Ganoderma lucidum were further detailed, noting its effects of
"relieving cough and asthma, tonifying the lung and kidney" (This
TCM approach combines symptom relief (easing cough/asthma by
clearing lung pathways) with root-cause treatment (strengthening
lung-kidney synergy to improve respiratory vitality), reflecting
TCM's holistic "treat both branch and root"philosophy.). In
modern times, pharmacological studies have confirmed that
Ganoderma spores, as the reproductive organ of Ganoderma
lucidum, inherit its traditional medicinal value and exhibit
significant anti-inflammatory, antioxidant, and
immunomodulatory activities, laying the foundation for their
development as a novel drug delivery system.

Introduction

Acute lung injury (ALI) and its severe form, acute respiratory distress
syndrome (ARDS), are common and life-threatening clinical
conditions, characterized by the destruction of the alveolar-capillary
barrier, inflammatory storms, and oxidative stress imbalances. These
conditions have a mortality rate of 30%-40% [1, 2]. Despite the
widespread use of traditional therapies such as mechanical ventilation
and glucocorticoids, their efficacy is limited and they often lead to
systemic side effects [3]. The core issue lies in the inefficiency of drug
delivery,when administered orally or via injection, less than 5% of the
drug reaches the lungs [1].

Recent advancements in nanotechnology and biomaterials have
driven the development of novel drug delivery systems (DDS), which
aim to improve drug targeting, enhance sustained release, and
increase bioavailability. These new strategies hold significant
potential for the treatment of ALI [4].

Traditional Chinese medicine (TCM) has a history of thousands of
years, and its abundant active components exhibit unique
pharmacological effects in the treatment of various diseases [5]. In
recent years, with the development of nanotechnology and drug
delivery systems, the active components of TCM have not only
attracted attention as therapeutic agents but also been explored as
drug delivery carriers to address key issues in modern drug delivery,
such as low solubility, low bioavailability, and insufficient targeting
ability [6]. Compared with traditional synthetic carriers, natural
carriers derived from TCM (e.g., Ganoderma lucidum spores (GLS),
liposomes, and polysaccharide nanoparticles) are highly favored due
to their excellent biocompatibility, low toxicity, and multi-target
regulatory capacity [7].
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As a core component of TCM, GLS are not only rich in active
substances such as polysaccharides and triterpenes and possess
multiple pharmacological effects including anti-inflammatory,
antioxidant, and immunomodulatory activities, but also emerge as a
promising "natural carrier-active component" dual therapeutic
platform, attributed to their unique micro-nano structure (with a
diameter of 2-5 um, which can reach 100-200 nm after
wall-breaking), high drug-loading capacity, and environmental
responsiveness [8].

The unique advantages of TCM active components lie in their
diverse chemical structures and pharmacological properties. For
instance, triterpenes and polysaccharides in GLS exhibit
immunomodulatory and anti-tumor activities, while their nano-scale
structure enables natural penetration of biological barriers [9].
Studies have shown that Ganoderma lucidum spore polysaccharides
(GLSP) can alleviate lung tissue damage by inhibiting the release of
pro-inflammatory factors such as TNF-a and IL-1§3, and activating the
Keapl-Nrf2/ARE pathway to enhance the activity of antioxidant
enzymes. In addition, targeting ligands (e.g., RGD peptides, mannose)
can be modified on their surface, and they can be combined with
magnetic or pH-sensitive materials to achieve precise delivery to
inflammatory sites and intelligent drug release [10]. These natural
carriers can not only accumulate in diseased tissues through passive
targeting (e.g., enhanced permeability and retention effect, EPR
effect) but also achieve precise delivery via active targeting (e.g.,
ligand-receptor recognition) [5].

As an innovative bioactive carrier, GLS presents unique advantages
over traditional synthetic carriers in treating ALL These advantages
stem from the synergistic therapeutic effects of triterpenoids and
endogenous active ingredients such as B-D-glucan, which regulate
macrophage polarization through the PI3K/Akt/mTOR signaling
pathway and inhibit caspase-1 activation mediated by NLRP3
inflammasomes. This forms a multi-dimensional anti-inflammatory
regulatory network [11, 12].

In terms of drug delivery characteristics, the GLS microparticle
system optimized by ultrasonic atomization has a mass median
aerodynamic diameter (MMAD) of 2.8 = 0.3 um and a geometric
standard deviation (GSD) of <1.5. This system achieves an alveolar
deposition efficiency of 68.7 = 4.2% in an in vitro bionic lung model,
which is a 57.9% improvement over the Poly (lactic-co-glycolic acid)
(PLGA) carrier (P < 0.01). These precise lung biodistribution
characteristics minimize the risk of systemic exposure [13].

Importantly, the industrial preparation of GLS integrates green
processes such as hot water gradient extraction and low-temperature
ultrasonic wall breaking. This approach not only maintains the
stability of the active ingredients but also boasts a significantly better
environmental friendliness index compared to the PLGA synthesis
process, which requires the use of organic solvents. This provides an
industrialization pathway that meets ICH Q1A standards for clinical
transformation [13]. The natural carrier system’s integration of
biotherapeutic functions, precise delivery characteristics, and
environmentally friendly manufacturing offers a promising new
paradigm for the local and efficient treatment of respiratory diseases
like ALL

Despite its promising prospects, the Ganoderma lucidum spore
delivery system faces challenges. Wall breaking technology can affect
drug loading stability, the in vivo metabolic dynamics are unclear, and
long-term safety requires further verification. Future research could
incorporate advanced nanoengineering strategies, such as reactive
oxygen-sensitive drug loading designs and gene editing vectors,
alongside multi-omics analysis, to optimize its targeting and
controlled release capabilities. This would advance the treatment of
ALI from 'extensive intervention" to a new stage of "precision
regulation."

ALI and acute respiratory distress syndrome

ALI and its more severe form, ARDS, are nonspecific pulmonary
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inflammatory responses triggered by trauma, infections, or the
inhalation of harmful substances. These conditions manifest as
progressive hypoxemia and pulmonary edema, resulting from the
destruction of the alveolar-capillary barrier [14]. From a
pathophysiological perspective, ALI is characterized by pulmonary
oxygenation dysfunction (PaO,/FiO, < 300 mmHg), whereas ARDS
represents a more severe stage (PaO,/FiO, = 200 mmHg). Both
conditions are essentially different severities of the same disease
spectrum [15]. As a pulmonary manifestation of systemic
inflammatory response, ALI/ARDS is clinically marked by bilateral
pulmonary infiltrates, decreased lung compliance, and refractory
hypoxemia. These conditions predominantly affect previously healthy
young and middle-aged individuals, causing tens of thousands of
deaths annually worldwide [16] (Figure 1). Notably, the incidence of
COVID-19-induced ALI/ARDS has increased dramatically. The distinct
pathological mechanisms characteristic of viral pneumonia,
particularly cytokine storms and microthrombosis, have substantially
complicated clinical management, highlighting the persistent public
health threat posed by this disease [17].

Pathophysiological mechanism of lung injury

The pathophysiological mechanism of lung injury involves complex
interactions between inflammatory responses, oxidative stress, and
cell death pathways. The core event is initiated by increased vascular
permeability, mediated by proinflammatory cytokines (such as TNF-a
and IL-1), which directly lead to alveolar fluid accumulation and
pulmonary edema formation [18]. On the oxidative stress level, the
excessive generation of reactive oxygen species (ROS) and NO,
triggered by hypoxia or reperfusion injury, exacerbates tissue damage
through lipid peroxidation and DNA damage [19]. Concurrently, the
programmed cell death (apoptosis) and non-programmed cell death
(necrosis) of alveolar epithelial and endothelial cells exhibit a
dynamic imbalance. Apoptosis is characterized by cell shrinkage and
chromatin condensation, whereas necrosis involves the release of
damage-associated molecular patterns (DAMPs) through membrane
rupture. These processes collectively drive the local inflammatory
cascade [18]. Notably, the intracellular components released by dead
cells activate immune effector cells, such as macrophages, forming a
vicious cycle of "cell death-inflammatory activation." This not only
expands the extent of lung parenchymal damage but may also lead to
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Figure 1 Alveolar pathological changes in ALI and ARDS.
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systemic inflammatory response syndrome (SIRS) [18, 20].

Current commonly used clinical treatment methods and
Limitations

In the management of ALI, lung protective ventilation and
conservative fluid management strategies are essential. For patients
with severe ARDS, high-frequency oscillatory ventilation and
consideration for extracorporeal membrane oxygenation (ECMO) are
recommended. To date, no drug therapy has demonstrated significant
benefit in large clinical trials [16]. Drug treatment for ALI remains
unsatisfactory, primarily because drugs cannot be specifically targeted
to the lungs. Effective drug delivery to the deep alveolar regions via
inhalation is crucial for treating ALI. However, traditional inhalable
carriers (such as lactose and mannitol) are generally inert. Therefore,
the development of new pharmacologically active carriers for
pulmonary delivery could produce synergistic effects in treating ALI
[17]. Current clinical treatments, such as mechanical ventilation and
glucocorticoids, have limited efficacy and significant systemic side
effects. A core challenge in treatment is the low efficiency of drug
delivery—when administered orally or by injection, less than 5% of
the drug reaches the lungs, making it difficult to achieve therapeutic
concentrations [17].

Main pharmacologically active ingredients and

extraction methods of GLS

Ganoderma lucidum has a broad range of therapeutic effects, including
sedative, hypnotic, neuroprotective, anti-inflammatory, analgesic,
anti-epileptic, and anti-depressant properties [21], and is also used to
treat insomnia [22]. As an important component of TCM, there are
more than 80 species of Ganoderma worldwide [23]. However, only
two species are listed in the Chinese Pharmacopoeia, namely G.
lucidum (GL, "Hongzhi" or "Red Ganoderma") and G. sinense (GS, "Zizhi"
or "Purple Ganoderma") [24, 25]. Ganoderma has a long history of
application in enhancing immunity, anti-tumor effects, regulating
blood pressure, and blood glucose, with a wide range of indications
[10, 26]. These two Ganoderma species are considered to have the
same therapeutic effects [25]. However, there are actually differences
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between G. lucidum (GL) and G. sinense (GS) in terms of chemistry and
partial pharmacological studies. The contents of triterpenes [27-30],
nucleosides and nucleobases [31], and sterols [32] in GL are
significantly higher than those in GS. Additionally, the
anti-proliferative activity of GL extract against tumor cells is stronger
than that of GS [28, 33]. The active components of Ganoderma fruiting
bodies, Ganoderma mycelia, and Ganoderma spore powder are similar
[34], but they differ in the enrichment of specific components.
Ganoderma fruiting bodies are the classical source of polysaccharides
and triterpenoids. Ganoderma mycelia are rich in Ganoderma
polysaccharides, with extremely low triterpene content, and mycelial
polysaccharides exhibit higher activity than extracellular
polysaccharides [35-37]. In contrast, Ganoderma spore powder is
abundant in lipophilic components such as Ganoderma triterpenes,
fatty acids, and trace elements, and it also contains unique
components (e.g., volatile oils). Polysaccharides exhibit various
biological activities, including immunomodulation [38], anti-tumor
effects [39], regulation of intestinal flora, and antioxidant properties
[40], significantly enhancing the immunomodulatory [41],
antioxidant [42], anti-tumor [43], and antibacterial properties [38] of
Ganoderma lucidum. The triterpenoid content is responsible for its
anti-tumor, anti-inflammatory [44], antioxidant, anti-hepatitis [45],
antimalarial, hypoglycemic, antibacterial, and anti-inflammatory

activities [46, 47]. The volatile oil components exhibit activities of
inhibiting tumor cell proliferation and scavenging free radicals [34].
Polyphenols contribute to their antioxidant, antibacterial,
anti-inflammatory properties, and anti-tyrosinase activity [48, 49]
(Figure 2).

Polysaccharides are the primary bioactive components in GLS, and
GLSP is obtained via hot water extraction. GLSP consists of three
monosaccharides: arabinose (Ara), glucose (Glc), and galactose (Gal).
1D and 2D NMR data reveal that GLSP is primarily composed of two
polysaccharides—f3-glucan and arabinogalactan. Arabinogalactan has
a galactan backbone with arabinofuranose (Araf) in the side chain.
B-glucan is the dominant polysaccharide in GLS. Molecular weight
analysis shows that GLSP induces IEC-6 cell proliferation in a
concentration-dependent manner. Additionally, GLSP has strong
anti-inflammatory properties, inhibiting the excessive production of
NO and pro-inflammatory cytokines such as LPS (lipopolysaccharide)
-induced interleukin-6 (IL-6) and interleukin-1f (IL-1B) [50].
Meanwhile, to investigate the chemical components of volatile oils in
the Ganoderma fermentation broth, the steam distillation method was
adopted for extraction, and GC-MS was used to analyze the extracted
volatile oils. Three volatile oil components with relatively high levels
(1-propanol, 2-hexyl-1-decanol, and benzaldehyde) were identified
[34].
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(A) Key bioactive-components of Ganoderma lucidum, include triterpenoids with anti-inflammatory, hepatoprotective, and anti-tumor effects;
polysaccharides with immunomodulatory functions, and polyphenol. (B) Polysaccharides are the primary bioactive components of Ganoderma
lucidum spores. GLSP can be extracted using hot water and is primarily composed of three monosaccharides: Ara, Glc, and Gal. Its molecular
structure is identified using NMR technology, and optimizing the extraction process directly influences the bioavailability of the polysaccharides.
(C) GLSP exerts anti-inflammatory effects by inhibiting inflammatory factors (NO, IL-6, IL-1B), with its activity verified in IEC-6. (D) Ganoderma
lucidum spores are extracted through traditional hot water extraction (solid-liquid ratio 1:20, decocted at 80 °C for 4 hours), yielding crude
polysaccharide GLAP-HW. After concentration and freeze-drying, further acid-heat treatment refines the polysaccharide to GLSP, reducing its
molecular weight and significantly improving water solubility and bioavailability. OE-GLSP retains substantial biological activity and effectively
reduces serum AST, ALT levels, and the release of inflammatory factors (IL-1f, IL-18, TNF-a). GLSP, Ganoderma lucidum spore polysaccharide;
NMR, nuclear magnetic resonance; Ara, arabinose; Glc, glucose; Gal, galactose; LPS, lipopolysaccharide; IL-6, interleukin-6; IL-1, interleukin-1p;
IEC-6, intestinal epithelial cells; OE-GLSP, GLSP extracted after oil extraction.
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In the traditional extraction method, GLS are mixed with purified
water at a specific material-liquid ratio and boiled at 80 °C for 4 hours.
The supernatant is then concentrated and freeze-dried to obtain the
crude polysaccharide of GLS, known as GLAP-HW [51]. GLSP is
extracted through acid-heat treatment, concentration, and
centrifugation. This process significantly reduces the molecular weight
of the polysaccharide while increasing its water solubility and
bioavailability [52]. GLSP extracted after oil extraction (OE-GLSP)
retains a large amount of bioactive substances, demonstrating certain
biological activity [53]. Compared to the 50% ethanol model group
(MG), GLSP obtained from spore germ layer damage significantly
reduced serum AST and ALT levels (P < 0.0001) and the release of
inflammatory factors, including IL-1p, IL-18, and TNF-a (P < 0.0001)
[54]. An ultrasound-assisted process was employed to extract
triterpenes from GLSP, with the process optimized using response
surface methodology (RSM) [55].

Concept and importance of drug delivery system

Before the advent of controlled drug delivery, all medications were
traditionally produced and stored in pill or capsule forms. In the 20th
century, advanced coating technologies were introduced. For
example, Malm et al. pioneered the use of polyacetate cellulose
phthalate for enteric coating, which dissolves at the weakly alkaline
pH found in the small intestine, making it ideal for controlled release
in the digestive tract [56]. In the 1960s, liposomes, a type of lipid
vesicle; were discovered, marking the beginning of nanotechnology in
drug delivery. Polymer-drug conjugates and liposomes ushered in the
era of nanocarriers, which continued to evolve with the advent of
third-generation drug delivery systems. Modern DDS feature advanced
properties such as smaller particle sizes, enhanced permeability,
improved solubility, higher efficacy, specific site targeting, greater
stability, reduced toxicity, and sustained drug release. These
advancements significantly improve the therapeutic performance of
agents compared to traditional dosage forms. Erythrocyte
membrane-camouflaged nanoparticles represent a new class of DDS
that showcases these advancements [57] (Figure 3).

Spores, particularly those from Ganoderma lucidum, offer unique
advantages as drug delivery systems in treating ALIL Their core value
lies in their alignment with clinical needs, offering multiple benefits

Enteric coated
controlled release

such as thermal stability, tolerance, multifunctionality,
biocompatibility, ease of preparation, and economic viability.

Firstly, their ideal particle size (2-5 pm) and density enable efficient
aerosolization and deep lung deposition upon inhalation, which is
critical for treating ALI [13, 17]. After wall-breaking, the resulting
nanoparticles (100-200 nm) can further facilitate cellular uptake and
targeting. Secondly, unlike inert synthetic carriers, GLS possess
inherent bioactivity. Their core components, such as GLSP and
triterpenes, exhibit potent anti-inflammatory, antioxidant, and
immunomodulatory  effects. = This creates a  synergistic
“carrier-and-drug” dual-function platform, where the carrier itself
contributes to the therapeutic outcome [8, 50]. Thirdly, their natural
polysaccharide-based structure provides excellent biocompatibility
and lower immunogenicity compared to some synthetic polymers like
PLGA [8, 17]. The surface of spore-derived particles can be further
chemically or physically modified (e.g., with targeting ligands or
responsive materials) to achieve active targeting or controlled drug
release [10, 58]. Finally, as a natural product derived from traditional
cultivation, GLS offer advantages in scalability and potential
cost-effectiveness for large-scale production. Their relative stability
also simplifies storage and transportation.

Application of GLS as drug delivery carriers

The application of GLS as drug delivery carriers has recently shown
promise in the field of tumor treatment. This includes combining
active targeting and passive targeting mechanisms for more precise
drug delivery, as well as breakthroughs in basic research on their
applications [59] (Figure 4). These findings suggest that similar
methods could be employed for drug combination treatments in acute
lung injury.

GLSP delivery system: active targeting and immune-mediated
mechanisms

In active targeting, ligands such as antibodies or peptides are
engineered to selectively bind overexpressed receptors on pathological
cells. This modification enhances targeting efficiency. For example, in
a dual-ligand system composed of mannose and hyaluronic acid, the
surface of nanoparticles loaded with GLSP can be modified with
mannose (targeting M2-type tumor-associated macrophages) and

Phytosome

50 o
Ethosome @ @ Liposomes

B
& ¢« -
a0 i Proniosome ‘-».C) i Q Niosomes
L S eeE—— east” e
Novel Drug
i Lipid
l o60% Delivery Systems narticla
20th I Nowadays
century MicrosnhereO ~ Dendrimer
Nanotechnology )
of liposomes Liquid cryst Hydrogel
Y Transdermal
drug delivery
system

Figure 3 Overview of the development of drug delivery systems.

In the 20th century, with advancements in enteric coating technology, polyacetate cellulose phthalate material developed by Malm et al. enabled
pH-dependent dissolution (such as in the weakly alkaline environment of the small intestine), facilitating the development of enteric controlled
release systems. In the 1960s, liposomes (lipid vesicles) were introduced as the first nanocarriers, laying the foundation for nanotechnology
alongside polymer-drug conjugates. Since then, drug delivery systems have evolved into their third generation—modern systems characterized by
controlled release technologies, including micronization (smaller particle size), enhanced permeability and solubility, targeted delivery, improved
stability, and reduced toxicity. The figure also illustrates various dosage forms that emerged in the late 20th century, such as microspheres, liquid
crystals, hydrogels, and transdermal delivery systems, underscoring the technological leap in drug delivery from basic sustained release to precise

targeting. The figure was created by BioRender (biorender.com).
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Nanoparticles, including porous egg yolk shell particles, magnetic ganoderma spores, pH-responsive nanoparticles, plant polysaccharides, and
microcapsulation technology, enable drug loading and delivery through both physical and chemical properties. Ligands, such as antibodies,
hyaluronic acid, peptides, and folic acid, modify the surface of nanoparticles to enhance their targeting recognition ability. Passive targeting: relies
on the EPR effect to accumulate nanoparticles in tumor tissues while preserving the integrity of endothelial barriers in healthy tissues, limiting
nonspecific distribution. Active targeting: ligand-receptor interactions trigger endocytosis, facilitating intracellular delivery and enabling precise
targeting of diseased cells. The figure was created by BioRender (biorender.com). EPR, enhanced permeability and retention.

hyaluronic acid (targeting the CD44 receptor). This modification
enhances the active recognition of both tumor cells and immune cells.
Moreover, immune cell-mediated targeting exploits the natural
homing ability of immune cells such as macrophages or neutrophils.
GLS components (e.g., polysaccharides) can activate these immune
cells to deliver drugs to sites of inflammation or tumors. For instance,
macrophages loaded with magnetic nanoparticles can be guided to
tumor areas using an external magnetic field, facilitating precision
treatment through targeted drug release. GLS-derived delivery systems
can also incorporate environmental response mechanisms (e.g., pH,
enzyme, or temperature-sensitive materials) to achieve intelligent
drug release. For example, combining Ganoderma lucidum
polysaccharides with pH-sensitive polymers can facilitate the rapid
release of drugs in the acidic environment of tumors, minimizing
toxicity to normal tissues [59].

Ganoderma lucidum spore nanocarriers: enhancing drug delivery
efficiency through passive targeting mechanisms

Passive targeting relies on the physicochemical properties of the
carrier,such as particle size, surface charge and the pathological
characteristics of the tumor microenvironment, such as vascular
leakage and lack of lymphatic drainage. This mechanism enhances
drug accumulation at the tumor site through the enhanced permeation
and retention (EPR) effect. GLS naturally possess a nanoscale structure
(approximately 5-8 pm in diameter). After wall disruption, the
nanoparticles (including polysaccharides or lipid components) can be
further reduced to sizes ranging from 100-200 nm, allowing them to
pass through tumor blood vessel leakages and meet lung deposition
requirements, thus improving drug delivery efficiency [17].

Porous Ganoderma lucidum polysaccharide carriers: overcoming
drug delivery bottlenecks through multi-dimensional technology
In 2018, Zheng Xing et al. used three-needle electrospray technology
to engineer porous yolk-shell particles loaded with Ganoderma lucidum
polysaccharides. These particles targeted oxidative stress, reducing
oxidative damage and improving cell viability, particularly for lung
delivery in chronic lung diseases [60]. In 2013, Sahoo B et al. studied
magnetic Ganoderma lucidum spore (mGLS) as targeted drug delivery
carriers. By integrating magnetic materials, these spores could be
precisely guided to tumor sites, increasing local drug concentrations
while minimizing impact on healthy tissues. This technique improved
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the therapeutic effects of the drug and reduced side effects [61].
Additionally, Ganoderma lucidum polysaccharides have been used to
develop pH-responsive nanoparticle drug delivery systems that release
drugs in specific acid-base environments, aligning with the acidic
characteristics of tumors. This system improves both the efficacy and
safety of treatment [62].

Microencapsulation, a common coating technology, can encapsulate
the active ingredients of GLS in tiny capsules. This isolates the active
components from the adverse external environment while allowing for
slow release, thereby enhancing bioavailability. Studies have shown
that microencapsulation significantly improves the oxidative stability
of Ganoderma lucidum spore oil and extends its shelf life [62].

Importance of drug delivery systems in pulmonary

treatment

Pulmonary drug delivery systems (PDDS) offer multiple advantages
and provide innovative solutions for the treatment of respiratory
diseases. These systems primarily help in avoiding the first-pass effect,
reducing systemic side effects, addressing chronic inflammation,
improving permeability and absorption efficiency, and advancing
delivery technologies.

Unlike oral drug administration, pulmonary drug delivery bypasses
the liver, preventing drug metabolism before reaching the
bloodstream [63]. This enhances bioavailability, especially for
treatments requiring high drug concentrations for efficacy [64]. This
is particularly important for drugs that need to maintain therapeutic
levels without being rapidly metabolized.

Pulmonary drug delivery systems can deliver drugs directly to the
lungs, thus reducing systemic side effects. Many drugs cause adverse
reactions when circulating systemically, but local delivery minimizes
these risks. For instance, pulmonary antibiotic delivery can achieve
high concentrations in the lungs with relatively minimal systemic
impact, thereby reducing the risk of side effects in patients [65, 66].

For lung diseases caused by chronic inflammation, such as chronic
obstructive pulmonary disease (COPD), pulmonary drug delivery
systems offer effective treatment strategies. Nanoparticle-based
delivery systems, in particular, have shown significant therapeutic
effects. These systems can regulate drug release rates, target the
inflammation site, and enhance therapeutic outcomes [67].
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The design of pulmonary drug delivery systems also takes into
account the permeability and absorption efficiency of the drug. By
optimizing the physicochemical properties of drugs, such as particle
size and surface characteristics, the absorption rate in the lungs can be
enhanced. This modification improves lung absorption, which, in turn,
increases the therapeutic effectiveness [68, 69].

Recent advances in nanotechnology and biomaterials have led to
the development of innovative drug delivery systems. New delivery
devices, such as dry powder inhalers (DPIs) and metered-dose inhalers
(MDIs), have improved patient compliance and enhanced lung drug
deposition [68]. These technologies enable more efficient and precise
drug delivery, which significantly improves treatment outcomes [68]
(Table 1).

Experimental models of GLS drug delivery system

Before conducting drug evaluation, establishing relevant disease
models is crucial. These models simulate specific lung diseases, such
as COPD, asthma, and pneumonia, providing a preliminary assessment
of drug efficacy [64]. The construction of experimental models for the
Ganoderma lucidum spore drug delivery system encompasses three
major categories: in vitro, animal, and disease models, and evaluates
its delivery efficacy and therapeutic mechanisms at multiple levels.

In vitro models

In vitro experimental models are used to simulate pulmonary drug
delivery mechanisms, including drug inhalation, deposition, and
biological effects. Recent advances have introduced several human
lung cell culture models, ranging from nasal/tracheal, bronchial, to
alveolar barrier cultures, and evolving from 2D monolayer to more
complex 3D co-culture systems. Notable research includes Chortarea
and Beyeler's work, where recombinant human bronchial tissues from
asthma patients and primary human bronchial epithelial cells from
COPD patients were used to explore the correlation between long-term
exposure to multi-wall carbon nanotubes and adverse effects [70, 71].
K.A. Foster et al. utilized the A549 human lung adenocarcinoma cell
line to establish an in vitro model of type II alveolar epithelium,
studying the role of cell metabolism and macromolecular processing
in lung epithelium drug delivery mechanisms [72]. Jiaqi Zhu's team
developed a mouse lung tissue-organ macrophage model to assess
whether mesenchymal stem cells could alleviate LPS-induced acute
lung injury [73].

These in vitro models use cell culture technology to examine the
effects of drugs on lung epithelial cells or other related cell lines. The
advantage of in vitro models lies in their precise control of
experimental conditions, allowing for the evaluation of drug effects a
the cellular level [74]. For instance, studies have shown that
Ganoderma lucidum significantly inhibited inflammatory cytokine

levels in the serum of nude mice and suppressed macrophage
RAW264.7 activation and inflammatory mediator expression (IL-1p,
TNF-a, iNOS, COX-2) in vitro [75]. Compared to traditional synthetic
carriers, such as poly(lactic-co-glycolic acid) copolymers, GLS offer
better biodegradability, lower immunogenicity, and are well-suited
for lung deposition with a particle size (usually 2-5 pm) that enhances
delivery efficiency [17] (Figure 5). The aforementioned model has
demonstrated efficacy in investigating the cellular-level effects of
drugs; however, it still has notable limitations. In contrast to the
detection of multiple cytokines (e.g., IL-8, IL-33, GM-CSF) in BALF
from patients with ARDS, LPS-induced stimulation only elicits a
limited set of factors such as TNF-a and IL-6. Consequently, this model
exhibits constraints in simulating cellular inflammation [76].

In vivo models

Animal models serve as essential tools for studying lung diseases and
treatment effects. By selecting appropriate models, the pathological
characteristics of human lung diseases can be replicated. These
include species like mice, rats, rabbits, and pigs, which share similar
physiological and pathological traits with humans. Animal models are
instrumental not only in evaluating drug efficacy but also in exploring
disease pathogenesis [77]. For example, the spontaneous latent
tuberculosis infection (LTBI) mouse model, which mimics human
LTBI, is invaluable for drug and vaccine development in tuberculosis
research.

In the field of acute lung injury, Jin Li et al. successfully established
an LPS-induced acute lung injury model in C57BL/6 mice, using
obacunone (OB) injections to explore the protective effects of OB on
LPS-induced injury [78]. For pulmonary fibrosis, Benedikt Jaeger's
team developed a specific pulmonary fibrosis humanized mouse
model (C57BL/6J) based on human ABC cells, which promotes the
progression of pulmonary fibrosis [79]. Additionally, Mecozzi et al.
verified the efficacy of anti-fibrotic treatments in a bleomycin-induced
pulmonary fibrosis mouse model using micro-radiation computed
tomography [80].

Studies show that GLSP significantly inhibits the growth of various
tumor models, including sarcoma S180, Lewis lung cancer, liver
cancer H22, and colon cancer C26. In vivo experiments have
demonstrated that Ganoderma Iucidum polysaccharides (GLP)
enhances the synthesis of superoxide dismutase (SOD), glutathione
peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST),
while reducing glutathione levels, thus protecting the vascular
endothelium [81]. Moreover, Ganoderma lucidum activated peptide
(GLP4), an activated peptide from Ganoderma lucidum, has shown
potential in alleviating lung injury caused by cadmium exposure by
inhibiting NLRP3 inflammasome activation, reducing cell counts and
inflammatory marker levels in BALF, and alleviating lung tissue
damage and inflammation [82].

A water-soluble polysaccharide named GSG, extracted from GLS,
induces TNF-a and IL-6 secretion via MAPKs- and Syk-dependent

Table 1 The importance and core advantages of pulmonary drug delivery systems

Advantages Specific characteristics and mechanisms Examples/Applications References

Avoid first-pass Deliver drugs directly to the lungs, bypass liver Drugs requiring high concentrations (e.g.,

effect metabolism, and significantly improve bioavailability anti-inflammatory drugs, targeted [62, 63]
therapeutic drugs)

Reduce systemic Local delivery reduces systemic drug exposure and Antibiotics for lung infections

side effects adverse reactions (such as high lung concentrations of [64, 65]

antibiotics and low systemic toxicity)

Address chronic Nanoparticle delivery systems can regulate drug release, Inflammation regulation in chronic

inflammation target inflammatory sites, and enhance efficacy obstructive pulmonary disease (COPD), [66]
asthma

Optimize Improve lung deposition and absorption by adjusting Dry powder inhalers (DPIs) to optimize

permeability and drug particle size and surface properties (such as drug distribution in the lungs [67, 68]

absorption efficiency  hydrophilicity)

Innovative delivery Combining nanotechnology, biomaterials, and new Smart responsive nanocarriers, biomimetic

technology devices (such as MDI, DPI) to improve drug delivery delivery systems [67]

advancement accuracy and patient compliance
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Figure 5 Molecular mechanism network of multi-pathway regulation of anti-tumor and inflammatory effects by active ingredients of
Ganoderma lucidum spores.

Ganoderma lucidum extract and its components exhibit multiple bioactive activities, including anti-inflammatory, antioxidant, anti-tumor, and
immunomodulatory effects. The extract reduces inflammation by inhibiting pro-inflammatory factors and NLRP3 inflammasomes while
upregulating antioxidant enzymes to mitigate oxidative damage and protect tissues. In terms of anti-tumor effects, Ganoderma lucidum inhibits the
growth of various cancer cells while enhancing spleen cell proliferation and anti-tumor activity. Additionally, Ganoderma lucidum spore powder
components (E/E-SBGS, E/A-SBGS) inhibit the PI3K/AKT/mTOR signaling pathway, synergistically reducing inflammatory factors (TNF-a, IL-6),
enhancing antioxidant capacity, and alleviating inflammatory responses. The figure was created by BioRender (biorender.com). E/E-SBGS,
ethanol/ethanol extract; E/A-SBGS, ethanol/water extract; TNF-a, tumor necrosis factor a; IL-6, interleukin-6; SOD, superoxide dismutase; GLP,
Ganoderma lucidum polysaccharides; GPx, glutathione peroxidase; CAT, catalase; GST, glutathione S-transferase; SDH, mitochondrial succinate
dehydrogenase; RSGLP, Ganoderma spore germ layer removed spores; IL-1f, interleukin-1f; iNOS, nitric oxide synthase; COX-2, cyclooxygenase;
GLSP, Ganoderma lucidum spore polysaccharides; GLP4, Ganoderma lucidum activated peptide; NLRP3, nucleotide-binding oligomerization

domain-like receptor protein 3; GSG, Ganoderma lucidum water-soluble polysaccharides.

pathways in mouse resident peritoneal macrophages. Dectin-1
partially mediates its biological activity, and GSG has demonstrated,
antitumor activity against Lewis lung cancer [83]. Furthermore
ethanol/ethanol extract (E/E-SBGS) and ethanol/water extract
(E/A-SBGS) from broken-wall GLS have shown dose-dependent
inhibition of the Akt/mTOR pathway in tumor cells, suggesting their
potential role in lung cancer therapy [84].

Ganoderma lucidum extract has shown protective effects in a new
LTBI mouse model by reducing Mycobacterium tuberculosis H37Rv
replication, indicating its potential in tuberculosis prevention [85]
(Figure 5). Admittedly, animal models have contributed to the
research on drug mechanisms; however, due to differences in
physiological structures between humans and animals, these models
cannot fully demonstrate the complexity of real pathological lesions.
For instance, although mouse models can simulate early ALI, they fail
to replicate the microthrombosis and fibrotic remodeling observed in
the progressive stage of human ARDS [86]. Furthermore, most of the
relevant experiments reported so far are limited to the analysis of
cytokines and histology, lacking studies on blood gas analysis, lung
compliance, and other parameters. As a result, there remains a gap in
the connection with clinical practice.

Safety evaluation of GLS drug delivery system

Studies have shown that plant spores exhibit excellent degradability in
the body without inducing significant toxic reactions, making them
safer and more reliable for biomedical applications [87]. Proper
handling and storage conditions are crucial to minimize oxidation and
acidic degradation during processing, thereby enhancing the safety
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and stability of GLS [88]. Acute and chronic toxicity tests are
conducted to assess the potential risks posed by GLS to organisms
[88]. Oral administration of E/E-SBGS and SBGS has been shown to
significantly inhibit tumor volume and weight in mice without gross
toxicity [84].

However, to advance the clinical translation of GLS, it is clearly
insufficient for its safety profile to be limited to "no acute toxicity";
further in-depth investigations are still required in the context of
clinical complexity. Although GLS are claimed to have "low
immunogenicity", B-glucan in their cell walls can be recognized by
Dectin-1. Following repeated exposure, the proportion of neutrophils
in BALF increases persistently, indicating a potential risk of low-grade
inflammation [89]. Additionally, existing studies have confirmed that
alveolar macrophages can phagocytose fungal spores but cannot
achieve complete degradation; thus, further research is needed to
determine whether GLS can be safely degraded in the human body
[90]. Moreover, it remains to be verified whether potential
batch-to-batch variations in natural products may affect the final
efficacy.

Summary and outlook

GLS, as natural micron-sized particles, have become a research focus
for drug delivery systems due to their unique structural properties,
such as porosity and high drug loading capacity, and their potential
biological activities, including anti-inflammatory and antioxidant
effects. This article reviews the application and mechanisms of GLS as
drug delivery carriers in the treatment of ALIL Studies suggest that GLS
can load therapeutic drugs (e.g., anti-inflammatory molecules or
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growth factors) through surface modification or encapsulation and
achieve precise lung delivery via inhalation or intravenous injection.
Their natural polysaccharide components enhance drug retention in
the lungs and reduce oxidative stress and inflammation by modulating
macrophage polarization and inhibiting key inflammatory factors such
as NLRP3, IL-1B3, TNF-a, iNOS, and COX-2.

Compared to traditional synthetic carriers, such as polylactic
acid-co-glycolic acid copolymers, GLS offer better biodegradability,
lower immunogenicity, and a particle size (2-5 pm) ideal for lung
deposition, which improves delivery efficiency. The Ganoderma
lucidum spore delivery system provides a dual treatment paradigm of
"natural carrier-active ingredient" for ALI treatment, offering both
efficiency and safety. Its clinical application potential has been
validated in adjunct tumor therapy, improving immune function and
quality of life in chemotherapy patients.

However, challenges remain in optimizing spore wall breaking
technology, drug loading stability, and in vivo metabolic kinetics. In
future studies, isotope tracing can be employed, where GLSP is labeled
with *3C or ?H and combined with the dual platforms of MALDI-MSI
and LC-MS/MS, enabling simultaneous quantification of in situ
distribution and plasma drug concentration [91]. Alternatively,
magnetic particle imaging (MPI) can be adopted: GLS are loaded with
superparamagnetic iron oxide nanoparticles, and real-time scanning
allows for multiple samplings in animal models to support further
research [92]. Additionally, in the design of responsive materials, such
as ROS-sensitive drug delivery systems, polythiocopper nanoparticles
can cleave thiocopper bonds in a high-level ROS environment, thereby
accumulating at pulmonary inflammatory sites and releasing their
carried payloads. This approach enhances the targeting ability and
controlled release performance of GLS [93]. Additionally, exploring
composite applications with other natural active ingredients (e.g.,
cyclodextrin frameworks) could help address the complex
pathological microenvironment of ALI and provide new strategies for
precision treatment. The in vivo drug release kinetics and long-term
safety need further validation in animal models, with considerations
for potential allergies.

In conclusion, the Ganoderma lucidum spore drug delivery system
holds significant promise for the treatment of ALI Its synergistic
multi-mechanism approach and natural safety profile provide a
compelling direction for the development of highly effective and
low-toxic lung-targeted drugs. With further advances in materials
science and pharmacology, this field is poised to usher in a new stage
for precision ALI treatment.
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