Please wait a minute...
1Traditional Medicine Research  2018, Vol. 3 Issue (3): 131-139    DOI: 10.12032/TMR201811071
Modernization of Traditional Medicine     
The protective effect of Dendrobium officinale polysaccharides on photoaging fibroblasts by scavenging reactive oxygen species and promoting the expression of TGF-β1
Rui Tang1, Qia-Qia Li1, Di Wang1, Jing Chen2, Jin-Hua Huang2,*(), Qing-Hai Zeng2,*()
1Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
2Dermatological Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
Download: HTML     PDF(893KB)
Export: BibTeX | EndNote (RIS)      

Highlights

Dendrobium officinale polysaccharides has the protective effect of on photoaging human skin fibroblasts via removing ROS induced by UVB, inhibiting the secretion of MMP-1 and increasing the expression of TGF-β1.

Editor’s Summary

Tiepishihu (Dendrobium officinale Kimura et Migo) was first recorded in Shennongbencaojing in the Qin and Han Dynasty of China (221 B.C.-25 A.D.).

Abstract

The purpose of this study was to explore the protective effect of Dendrobium officinale polysaccharides (DOP) on photoaging human skin fibroblasts and its specific mechanism of action. The photoaging fibroblast model was established by ultraviolet B (UVB) irradiation. The toxic effects of different concentrations of DOP were detected using MTT. Senescent cells were detected using a β-galactosidase kit. Reactive oxygen species (ROS) in cells were detected using a flow cytometer. The expression of matrix metalloproteinase-1 (MMP-1), type I collagen C-terminal peptide (CICP), and transforming growth factor β-1 (TGF-β1) in spent culture medium was detected by ELISA. The results showed that the low concentration of DOP (20, 40, 80 μg/mL) had no cytotoxicity on fibroblasts. After 60 mJ/cm2 UVB irradiation, the number of aging β-gal-positive cells increased, the levels of CICP and TGF-β1 in spent culture medium decreased, while the levels of MMP-1 and ROS increased. After administration of DOP on photoaging fibroblasts, the number of aging β-gal-positive cells decreased, the levels of ROS and MMP-1 decreased, and the levels of TGF-β1 and CICP increased. This experiment suggests that DOP has the effect of removing ROS induced by UVB, regulating the balance of collagen production and degradation, and protecting photoaging human skin fibroblasts.



Key wordsDendrobium officinale polysaccharides      Photoaging fibroblasts      ROS      MMP-1      TGF-β1      Collagen protein     
Published: 04 May 2018
Corresponding Authors: Huang Jin-Hua,Zeng Qing-Hai     E-mail: huangjinhua60@163.com.;271594943@qq.com.
About author: #These authors contributed equally to this work.
Cite this article:

Rui Tang, Qia-Qia Li, Di Wang, Jing Chen, Jin-Hua Huang, Qing-Hai Zeng. The protective effect of Dendrobium officinale polysaccharides on photoaging fibroblasts by scavenging reactive oxygen species and promoting the expression of TGF-β1. 1Traditional Medicine Research, 2018, 3(3): 131-139. doi: 10.12032/TMR201811071

URL:

https://www.tmrjournals.com/tmr/EN/10.12032/TMR201811071     OR     https://www.tmrjournals.com/tmr/EN/Y2018/V3/I3/131

Figure 1 Cytotoxicity of DOP on fibroblasts
*The DOP 160 μg/mL group vs control group, P = 0.003. DOP, Dendrobium officinale polysaccharides.
Figure 2 DOP depressed fibroblasts aging induced by UVB
The SA-β-Gal assay is used for detection of senescent cells. Above, cellular morphology. Senescent cells presented blue color. Below, Percentage of senescent cells. a, The control group vs. DOP 0 μg/mL (P < 0.001); b, DOP 40 μg/mL vs. 0 μg/mL (P = 0.025); c, DOP 80 μg/ml vs. 0 μg/mL (P = 0.004). UVB, Ultraviolet B; DOP, Dendrobium officinale polysaccharides; SA-β-Gal, β-galactosidase.
Figure 3 The effects of DOP on the expression of MMP-1, CICP and TGF-β1.
Figure 3 The effects of DOP on the expression of MMP-1, CICP and TGF-β1.
ELISA was used to detect the levels of MMP-1, TGF-β1, and CICP. The statistical analysis was carried out after the data standardization. Left: a, Control group vs. DOP 0 μg/mL (P < 0.001); b, DOP 20 μg/mL vs. 0 μg/mL (P = 0.038); c, DOP 40 μg/mL vs. 0 μg/mL (P = 0.007); d, DOP 80 μg/mL vs. 0 μg/mL (P = 0.001). Middle: e,Control group vs. DOP 0 μg/mL (P = 0.026); f, DOP 40 μg/mL vs. 0 μg/mL (P = 0.008); g, DOP 80 μg/mL vs. 0 μg/mL (P = 0.002). Right: h, Control group vs. DOP 0 μg/mL (P = 0.017); i, DOP 20 μg/mL vs. 0 μg/mL (P = 0.015); j, DOP 40 μg/mL vs. 0 μg/mL (P = 0.006); k, DOP 80 μg/mL vs. 0 μg/mL (P < 0.001). UVB, Ultraviolet B; MMPs, Matrix metalloproteinases; DOP, Dendrobium officinale polysaccharides; CICP, C-terminal peptide.
Figure 4 DOP depressed the levels of UVB-induced ROS
Above, cells under fluorescence microscope (40× magnification). The stronger the fluorescence intensity is, the higher the ROS level is. Below, mean fluorescence intensity. The statistical analysis was carried out after the data standardization. a, Control group vs. DOP 20 μg/mL (P < 0.001); b, DOP 20 μg/mL vs. 0 μg/mL (P = 0.029); c, DOP 40 μg/mL vs. 0 μg/mL (P = 0.017); d, DOP 80 μg/mL vs. 0 μg/mL (P = 0.002). UVB, Ultraviolet B; DOP, Dendrobium officinale polysaccharides; ROS, Reactive oxygen species.
1.   Pan LH, Li XF, Wang MN, et al. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int J Biol Macromol 2014, 64: 420-427.
doi: 10.1016/j.ijbiomac.2013.12.024 pmid: 24370475
2.   Zhou BR, Zhang LC, Permatasari F, et al. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts. Photodiagnosis Photodyn Ther 2016, 14: 47-56.
doi: 10.1016/j.pdpdt.2016.02.005 pmid: 26876682
3.   Wenk J, Brenneisen P, Meewes C, et al. UV-induced oxidative stress and photoaging. Karger Publishers, 2000: 83-94.
doi: 10.1159/000060656
4.   Sharma D, Kober MM, Bowe WP.Anti-Aging Effects of Probiotics. J Drugs Dermatol 2016, 15: 9-12.
pmid: 26741377
5.   Kim HK.Garlic supplementation ameliorates UV-Induced photoaging in hairless mice by regulating antioxidative activity and MMPs expression. Molecules 2016, 21: 70.
doi: 10.3390/molecules21010070 pmid: 26760989
6.   Jung SK, Su JH, Chang HJ, et al. Naringenin targets ERK2 and suppresses UVB-induced photoaging. J Cell Mol Med 2016, 20: 909-919.
doi: 10.1111/jcmm.12780 pmid: 26861188
7.   Brenneisen P, Sies H, Scharffetter-Kochanek K.Ultraviolet-B irradiation and matrix metalloproteinases: from induction via signaling to initial events. Ann N Y Acad Sci 2002, 973: 31-43.
doi: 10.1111/j.1749-6632.2002.tb04602.x
8.   Kang S, Fisher GJ, Voorhees JJ.Photoaging and Topical Tretinoin. Arch Dermatol 1997, 133: 1280-1284.
doi: 10.1001/archderm.1997.03890460104012
9.   Sander CS, Chang H, Salzmann S, et al. Photoaging is associated with protein oxidation in Human skin in vivo. J Investig Dermatol 2002, 118: 618-625.
doi: 10.1046/j.1523-1747.2002.01708.x pmid: 11918707
10.   Inomata S, Matsunaga Y, Amano S, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Investig Dermatol 2003, 120: 128.
doi: 10.1046/j.1523-1747.2003.12021.x pmid: 12535209
11.   Sorg O, Janer V, Antille C, et al. Effect of intense pulsed-light exposure on lipid peroxides and thymine dimers in human skin in vivo. Arch Dermatol 2007, 143: 363-366.
doi: 10.1001/archderm.143.3.363 pmid: 17372101
12.   Gambichler T, Skrygan M, Tomi NS, et al. Significant downregulation of transforming growth factor-β signal transducers in human skin following ultraviolet-A1 irradiation. Br J Dermatol 2007, 156: 951-956.
doi: 10.1111/j.1365-2133.2007.07802.x pmid: 17381457
13.   He YJ, Liu Y, Wang JH, et al. Effects of TGF-β1 on the expression of MMP-1 and MMP-3 mRNA in skin fibroblasts induced by UVA in vitro. Chin J Aesthetic Med 2010, 19: 53-55.
14.   Hwang IK, Yoo KY, Kim DW, et al. An extract of Polygonummultiflorum protects against free radical damage induced by ultraviolet B irradiation of the skin. Braz J Med Biol Res 2006, 39: 1181-1188.
doi: 10.1590/S0100-879X2006000900005 pmid: 16972004
15.   Sun S, Ping J, Su W, et al. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. Cytotechnology 2016, 68: 1-12.
doi: 10.1007/s10616-015-9870-0 pmid: 25899169
16.   Lee KE, Mun S, Pyun HB, et al. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol Pharm Bull 2012, 35: 1669-1675.
doi: 10.1248/bpb.b12-00037 pmid: 23037157
17.   Luo QL, Tang ZH, Zhang XF, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int J Biol Macromol 2016, 89: 217-227.
doi: 10.1016/j.ijbiomac.2016.04.067 pmid: 27131730
18.   Zeng Q, Zhou F, Lei L, et al. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging. Mol Med Rep 2017, 15: 111-116.
doi: 10.3892/mmr.2016.6026 pmid: 27959406
19.   Xing X, Cui S W, Nie S, et al. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium, plants. Bioact Carbohydr Diet Fibre 2013, 1: 131-147.
doi: 10.1016/j.bcdf.2013.04.001
20.   Lin X, Shaw PC, Sze SC, et al. Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sj?gren’s syndrome mice. Int Immunopharmacol 2011, 11: 2025-2032.
doi: 10.1016/j.intimp.2011.08.014 pmid: 21890001
21.   Xia L, Liu X, Guo H, et al. Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale, ( Tiepishihu ) in vitro. J Funct Foods 2012, 4:294-301.
doi: 10.1016/j.jff.2011.12.006
22.   Yang LC, Lu TJ, Hsieh CC, et al. Characterization and immunomodulatory activity of polysaccharides derived from Dendrobium tosaense. Carbohydr Polym 2014, 111: 856-863.
doi: 10.1016/j.carbpol.2014.05.007 pmid: 25037425
23.   He TB, Huang YP, Yang L, et al. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale. Int J Biol Macromol 2015, 83: 2616-2642.
doi: 10.1016/j.ijbiomac.2015.11.038 pmid: 26592697
24.   Yang LC, Lu TJ, Hsieh CC, et al. Characterization and immunomodulatory activity of polysaccharides derived from Dendrobium tosaense. Carbohydr Polym 2014, 111: 856.
doi: 10.1016/j.carbpol.2014.05.007 pmid: 25037425
25.   Wang JH, Luo JP, Zha XQ, et al. Comparison of antitumor activities of different polysaccharide fractions from the stems of Dendrobium nobile Lindl. Carbohydr Polym 2010, 79:114-118.
doi: 10.1016/j.carbpol.2009.07.032
26.   Luo AX, He XJ, Zhou SD, et al. Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydr Polym 2010, 79: 1014-1019.
doi: 10.1016/j.carbpol.2009.10.033
27.   Tian CC, Zha XQ, Pan LH, et al. Structural characterization and antioxidant activity of a low-molecular polysaccharide from Dendrobium huoshanense. Fitoterapia 2013, 91: 247-255.
doi: 10.1016/j.fitote.2013.09.018 pmid: 24096144
28.   Pan LH, Li XF, Wang MN, et al. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium, species. Int J Biol Macromol 2013, 64: 420-427.
doi: 10.1016/j.ijbiomac.2013.12.024 pmid: 24370475
29.   Luo QL, Tang ZH, Zhang XF, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale. Int J Biol Macromol 2016, 89: 219-227.
doi: 10.1016/j.ijbiomac.2016.04.067 pmid: 27131730
30.   Grimsrud PA, Xie H, Griffin TJ, et al. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 2008, 283: 21837-21841.
doi: 10.1074/jbc.R700019200
31.   Jang J, Ye BR, Heo SJ, et al. Photo-oxidative stress by ultraviolet-B radiation and antioxidative defense of eckstolonol in human keratinocytes. Environ Toxicol Pharmacol 2012, 34: 926-934.
doi: 10.1016/j.etap.2012.08.003 pmid: 22999063
32.   W?lfle U, Seelinger G, Bauer G, et al. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol Physiol 2014, 27: 316-332.
doi: 10.1159/000360092 pmid: 24994069
33.   Matsumura Y, Ananthaswamy HN.Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004, 195: 298-308.
doi: 10.1016/j.taap.2003.08.019 pmid: 15020192
34.   Pillai S, Oresajo C, Hayward J.Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review. Int J Cosmet Sci 2005, 27: 17-34.
doi: 10.1111/j.1467-2494.2004.00241.x pmid: 18492178
35.   Bosch R, Philips N, Suárez-Pérez JA, et al. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants 2015, 4: 248-268.
doi: 10.3390/antiox4020248 pmid: 4665475
36.   Zhan JY, Wang XF, Liu YH, et al. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation. Mediators Inflamm 2016, 2016: 1-12.
doi: 10.1155/2016/3271451 pmid: 26903706
37.   Wenk J, Btenneisen P, Meewes C, et al. UV-induced oxidative stressand photoaging. Curr Probl Dermatol 2001, 29: 83-94.
doi: 10.1159/000060656 pmid: 11225204
38.   Ohnishi Y, Tajima S, Akiyama M, et al. Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch Dermatol Res 2000, 292: 27-31.
doi: 10.1007/PL00007457 pmid: 10664012
39.   Quan T, He T, Voorhees J, et al. Uhraviolet irradiation blocks cellular responses to transforming growth factor-β by down-regulating its type-II receptor and inducing Smad7. J Biol Chem 2001, 276: 26349-26356.
doi: 10.1074/jbc.M010835200 pmid: 11320083
40.   Qua T, He T, Voorhees J, et al. Ultraviolet irradiation induces smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Bio Chem 2005, 280: 8079-8085.
doi: 10.1074/jbc.M409647200
41.   Quan T, He T, Kang S, et al. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type Ⅱ receptor/Smad signaling. Am J Pathol 2004, 165: 741-751.
doi: 10.1016/S0002-9440(10)63337-8 pmid: 15331399
42.   Miyazono K.Positive and negative regulation of TGF-beta signaling. J Cell Sci 2000, 113: 1101-1109.
doi: 10.1023/A:1005568132027 pmid: 10704361
43.   Hanyu A, Ishidou Y, Ebisawa T, et al. The N domain of Smad7 is essential for specific inhibition of transformation growth factor-beta signaling. J Cell Biol 2001, 155: 1017-1027.
doi: 10.1083/jcb.200106023
44.   Luo W, Yao L, Hua GU, et al. The Effect of TGF-β/Smad Signal Transduction Pathway on the Expression of MMP-1 and Pro-collagen Ⅰ mRNA in the Process of Photoaging. J Dermatol Venereol 2011, 33: 125-128.
45.   Yin L, Morita A, Tsuji T.Tobacco smoke extract induces age-related changes due tomodulation of TGF-beta. Exp Dermatol 2003, 12: 51-56.
doi: 10.1034/j.1600-0625.12.s2.8.x pmid: 14756524
46.   Gambichler T, Skrygan M, Tomi NS, et al. Significant downregulation of transforming growth factor-β signal transducers in human skin following ultraviolet-A1 irradiation. Br J Dermatol 2007, 156: 951-956.
doi: 10.1111/j.1365-2133.2007.07802.x pmid: 17381457
47.   Sun S, Ping J, Su W, et al. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. Cytotechnology 2016, 68: 1-12.
doi: 10.1007/s10616-015-9870-0 pmid: 25899169
48.   Lee KE, Mun S, Pyun HB, et al. Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol Pharm Bull 2012, 35: 1669-1675.
doi: 10.1248/bpb.b12-00037 pmid: 23037157
[1] Su-Tong Liu, Su-Fang Zhang, Kai-Qi Su, Ying-Bin Luo, Zhi-Hong Fang, Yuan Fang, Jing Xu, Jian-Chun Wu, Yan Li. The effect of long-term traditional Chinese medicine treatment on disease-free survival of postoperative stage I-III lung cancer patients: a retrospective cohort study[J]. 1Traditional Medicine Research, 2019, 4(2): 91-98.
[2] Guang-Quan Zhou, Hong-Lai Zhang. Can hip abduction reduce the risk of femoral head necrosis deteriorated into osteoarthritis? A 3D finite element analysis[J]. 1Traditional Medicine Research, 2018, 3(5): 230-236.
[3] Yue Ji, Xue-Rou Yan, Hong-Tao Yang, Kang Yang, Qing-Yun Zhao, Shou-Ci Hu, Qi-Hang Su. Influence of astragalus polysaccharide on kidney status and fibrosis indices of a rat model of streptozotocin-induced diabetic nephropathy[J]. 1Traditional Medicine Research, 2018, 3(4): 173-180.
[4] Nie Hai-Yang, Chen Rui, Zhang Hong-Na, Pan Zhi. Effects of saponin from the seed of Litchi chinensis Sonn on TGF-β1, FN and SOCS-1 in renal tubular epithelial cells under high glucose[J]. 1Traditional Medicine Research, 2017, 2(3): 144-148.
[5] Xue Zhong, Xu Bing, Yang Chan, Wang Xin, Sun Fei, Shi Xin-Yuan, Qiao Yan-Jiang. Uncertainty profile for NIR analysis of tanshinone I content in tanshinone extract powders[J]. 1Traditional Medicine Research, 2016, 1(3): 138-148.