Please wait a minute...
Traditional Medicine Research  2018, Vol. 3 Issue (5): 215-229    DOI: 10.12032/TMR201813080
Ethnic and Regional Medicine     
Bioactive molecules in Siddha Polyherbal Nilavembu Kudineer alleviating symptoms of Dengue/Chikugunya
Rubeena Mattummal1, Divya Kallingilkalathil Gopi1, Sathiya Rajeshwaran Parameswaran1, Sunil Kumar Koppala Narayana1,*()
1 Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Arumbakkam, Chennai, India.
Download: HTML     PDF(365KB)
Export: BibTeX | EndNote (RIS)      


The current study aims at exploring the bioactive molecules in Siddha Polyherbal Nilavembu Kudineer alleviating symptoms of Dengue/ Chikugunya.

Editor’s Summary

Nilavembu Kudineer is one of the thirty-two types of internal medicines described in the ancient Siddha system of medicine in south India which reduces fever and relieves body aches.


Dengue is the most prevalent arthropod-borne viral diseases in terms of morbidity and mortality in the recent decade with the classic symptoms of high fever, headache as well as muscle and joint pain. Nilavembu Kudineer (NK) is one among the 32 types of internal medicines described in the ancient Siddha system of medicine in south India which reduces fever and relieves body aches. NK, a polyherbal formulation made up of eight traditional herbs in equal parts, is also recommended for prevention and management of all types of viral infections including Dengue/Chikugunya. Exploration of bioactive compounds in the plants is the primary step for the standardization and bioactivity screening of plants and formulations. So the current study aims at recording the chemical constituents and medicinal activities of each ingredient of NK. The anti-pyretic, anti-inflammatory, analgesic and immunostimulant effects of NK have been attributed to more than one ingredient in NK. The medicinal property of the NK can be also attributed to the combined effect of all phytochemicals present in these eight herbs. The current study encompasses the various chemicals and the activities of individual herbs but a thorough stereoscopic and chromatographic investigation is required to trace out the major phytochemical entities which are retained once the NK is prepared by the traditional methods.

Key wordsAnti-Dengue herbals      Dengue virus      Chikugunya      Fever      Pain      Flavivirus     
Published: 04 September 2018
Corresponding Authors: Kumar Koppala Narayana Sunil     E-mail:
Cite this article:

Rubeena Mattummal, Divya Kallingilkalathil Gopi, Sathiya Rajeshwaran Parameswaran, Sunil Kumar Koppala Narayana. Bioactive molecules in Siddha Polyherbal Nilavembu Kudineer alleviating symptoms of Dengue/Chikugunya. Traditional Medicine Research, 2018, 3(5): 215-229. doi: 10.12032/TMR201813080

URL:     OR

Constituents Class Bioactivity Reference
Andrographolide Diterpene Anti-inflammatory, anti-cancer, anti-microbial and hepatoprotective Levita, et al., 2010 [14]
Shen, et al., 2009 [15] Singha, et al., 2003 [16],
Rana et al., 1991 [17]
Bis-andrographolide Terpene Anti-HIV Reddy, et al., 2005 [22]
14-deoxy-11,12-didehyroandrographolide Terpene Anti-fungal Sule, et al., 2012 [23]
14-deoxyandrographolide Terpene Anti-fungal Sule, et al., 2012 [23]
Neoxyandrographiside Terpene Anti-fungal Sule, et al., 2012 [23]
Ninandrographolide Terpene Immunostimulant Puri, et al., 1993 [18]
Oxygenated flavones Flavonoids Anti-bacterial Xie, et al., 2015 [24]
Oroxylin A Flavone Anti-cancer Li, et al., 2009 [25]
Wogonin Flavone Anti-inflammatory, anti-cancer, anti-oxidant Lin, et al., 1996 [26] Li-weber, et al., 2009 [27] Shieh et al., 2000 [28]
Carvacrol Phenol Anti-microbial Didry, et al., 1994 [29]
Eugenol Ether-alcohol Anti-septic activity Ali, et al., 2005 [30]
Myristic acid Fatty acid Anti-bacterial activity Agoramoorthy, et al. 2007 [31]
Chlorogenic acid Phenolic acid Anti-nociceptive effect Bagdas, et al., 2014 [32]
Hentriacontane Alkanes Anti-plasmodial and
Sowmiya, et al., 2017 [33]
Tritriacontane Hydrocarbon Anti-oxidant Takaba, et al., 1997 [34]
Caffeic acid Polyphenol Clastogenic, anti-oxidant, antiviral, anti-cancer and anti-thrombosis Hanham, et al., 1983 [35] Jiang, et al., 2005 [36]
Dicaffeoylquinic acid Carboxylic acid Anti-oxidant Danio, et al. 2009 [37]
Β-sitosterol-D-glucoside Phytosterol Anti-inflammatory Deepak, et al., 2000 [38]
Table 1 Phytochemical constituents in Andrographis paniculata Burm.f. Nees (Chrysopogon zizanoids (L.) Roberty)
Constituents Class Bioactivity References
Vetivone Sesquiterpene Anti-bacterial Dos Santose, et al., 2014 [42]
α-cadinene Sesquiterpene Anti-microbial De Falco, et al., 2013 [43]
α-calacorene Sesquiterpene Nil reported -
Epikhusinol Sesquiterpene alcohol Anti-fungal Kaushal, et al., 2001 [44]
Khusol Sesquiterpene alcohol Nil reported -
Khusenic acid (zizanoic acid) Sesquiterpene Anti-bacterial Dwivedi, et al., 2013 [45]
Zizanol Sesquiterpene alcohol Repellent Khallil, et al., 2011 [46]
Table 2 Phytochemical constituents in Chrysopogon zizanoides (L.) Roberty
Constituents Class Bioactivity References
Cyperene Sesquiterpene Apoptotic, anti-oxidant and anti-bacterial Ahn, et al., 2015 [51]
Essien , et al., 2018 [52]
β-selinene Hydrocarbon Anti-microbial and anti-oxidant Chandra, et al., 2017 [53]
Cyperenone Sesquiterpene Antiulcer Berger, 2007 [54]
α-cyperone Sesquiterpene Selective cytotoxic, anti-inflammatory and nueroprotective
Al-snafi, 2016 [55]
4α-5α,oxidoeudesm-11-en-3α-ol Sesquiterpenic oxido alcohol Anti-hepatitis B virus Hikino, et al., 1976 [56]
Copadiene Sesquiterpene Anti-malarial Khoi, 1999 [57]
Epoxyguaiene Essential oil Anti-oxidant, Anti-malarial and Anti-diabetic Khoi, 1999 [58]
Rotundone Sesquiterpene Anti-mutagenic Kilani, et al., 2005 [59]
Cyperenol Sesquiterpene Hypotensive and anti-microbial Sahu, et al., 2010 [59]
Eugenol Ether-alcohol Antiseptic Didry, et al., 1994 [29]
Cyperol Sesquiterpene Insecticidal Pubchem [60]
Isocyperol Sesquiterpene Anti-inflammatory Seo, et al., 2016 [61]
α-and β-rotunol Sesquiterpene Fungitoxic Hiking, et al., 1971 [62]
Kobusone Sesquiterpene Anti-inflammatory and analgesic Ross, 2003 [63]
Isokobusone Sesquiterpene Anti-inflammatory Kittayaruksakul, et al., 2013 [64]
Table 3 Phytochemical constituents in Cyperus rotundus L.
Constituents Class Bioactivity References
Orientin Flavonoid Anti-cancer, anti-oxidant and neuroprotection An, et al., 2015 [68], Xiao, et al., 2018 [69], Law, et al., 2014 [70]
Vitexin Flavonoid Anti-viral and anti-cancer activity Pubchem [71], An, et al., 2015 [68]
Orientin-2’O-glucoside Glucoside Sedative activity Gazola, et al., 2018 [72]
Vitexin-2’O-glucoside Glucoside Enzyme inhibition Tao, et al., 2015 [73]
Table 4 Phytochemical constituents in Mollugo cerviana (L.) Ser.
Constituents Class Bioactivity References
Piperine Alkaloid Anti-inflammation, anti-nociceptive, anti-arthritic, anti-cancer and immunomodulatory Bang, et al., 2009 [77]
Rodgers, et al., 2009 [78]
Piperonal Aldehyde Antiobesity Meriga, et al., 2017 [79]
Piperoleine B Organic compound Hepatoprotective Pubchem [80]
Pipercide Alkaloid Hepatoprotective Pubchem [81]
Sabinene Monoterpene Anti-oxidant and repellent Jeramillo, et al., 2012 [82]
D-limonene Monoterpene Chemoprevention Sun, 2007 [83]
β-caryophyllene Sesquiterpenoid Anti-inflammatory, analgesic, antipyretic, and platelet-inhibitory actions Pubchem [84]
α-pinene Terpene Anti-inflammatory Kim, et al., 2015 [85]
β-ocimene Monoterpene Insecticidal Pubchem [86]
δ-cadinol Alcohol Antioxidant Zeng, et al., 2011 [87]
Guaiacol Phenolic compound Expectorant and antiseptic Pubchem [88]
N-trans-feruloylpiperidine Phenolic compound Antioxidant Abdulazeez, et al., 2016 [89]
1,8 cineole Phenol Repellent Tripathy et al., 2001 [90]
p-cymene Monoterpene Antioxidant and vasorelaxant Silva et al., 2015 [91]
N-trans-feruloyl tyramine Phenol Anti-inflammatory Pubchem [92]
Guineensine Alkene Anti-plasmodial Pubchem [93]
Feruperine Alkaloid Antioxidant Nakatani, et al.,1986 [94]
Trachyone Pyrollidine Alkamide Antibacterial Reddy, et al.,2004 [95]
Isopiperolein B Pyrollidine Alkamide Antibacterial Reddy, et al.,2004 [95]
Pergumidiene Pyrollidine Alkamide Antibacterial Reddy, et al.,2004 [95]
Pellitorine Pyrollidine Alkamide Antibacterial Reddy, et al.,2004 [95]
Pipnoohine Amide Insecticidal Siddiqui, et al.,2004 [96]
Pipyahyine Amide Insecticidal Siddiqui, et al.,2004 [96]
N-isobutyl-2E,4E-octadecadienamide Amide Hepatoprotective Pubchem [97]
N-isobutyl-2E,4E,8Z-eicosatrienamide Amide Antibacterial Reddy, et al., 2004 [95]
Piperchabamide D Amide Insecticidal Hwang, et al., 2017 [98]
Retrofractamide A Amide Adipogenetic Mourad, et al., 2013 [99]
Dehydroretrofractamide Amide Enzyme inhibition Rho, et al., 2004 [100]
Table 5 Phytochemical constituents in Piper nigrum L.
Constituents Class Bioactivity References
α, β-santalol Sesquiterpene Chemoprevention and antifungal activity Kim, et al., 2017 [103]
α, β-santalals Sesquiterpene Kim, et al., 2006 [104]
α, β-santaldiol Sesquiterpene Kim, et al., 2006 [104]
10(Z)-sandalnol Sesquiterpene Anti-cancer activity Kim, et al., 2006 [104]
α-santalenoic acid Sesquiterpene Anti-cancer activity Kim, et al., 2006 [104]
Vanillic acid 4-O-Neohesperidoside Sesquiterpene Anti-cancer activity Kim, et al., 2006 [104]
2α,12-dihydroxy10(Z)-Campherene Sesquiterpene Antifungal and cytotoxic activity Kim, et al., 2017 [103]
2β,12-dihydroxy10(Z)-Campherene Sesquiterpene Antifungal Kim, et al., 2017 [103]
2,12,13-trihydroxy-10-Campherene Sesquiterpene Antifungal and cytotoxic activity Kim, et al., 2017 [103]
(Z)-lanceol Sesquiterpene Anti-microbial activity Ochi, et al., 2005 [105]
(Z)-7-hydroxynuciferol Sesquiterpene Anti-microbial activity Ochi, et al., 2005 [105]
Eugenol-4-O-rhamnosyl glucoside Glycoside Anti-cancer activity Kim, et al., 2006 [105]
Methoxyeugenol-4-O-rhamnosyl glucoside Glycoside Anti-cancer activity Kim, et al., 2006 [104]
2R-(Z)-campherene-2,13-diol Sesquiterpenes Anti-bacterial activity Ochi, et al., 2005 [105]
(Z)-2β-hydroxy-14-hydro-β-santalol Sesquiterpenes Anti-bacterial activity Ochi, et al., 2005 [105]
(Z)-2α-hydroxy-albumol Sesquiterpenes Anti-bacterial activity Ochi, et al., 2005 [105]
(Z)-1β-hydroxy-2-hydrolanceol Sesquiterpenes Anti-bacterial activity Ochi, et al., 2005 [105]
Table 6 Phytochemical constituents in Santalum album L.
Constituents Class Bioactivity References
Bryonolic acid Triterpenoid Neurotoxic activity, anti-inflammatory activity Que, et al., 2016 [109] Gatbonton-Schwager, et al., 2012 [110]
Cucurbitacin B Triterpenoid Inhibition of carcinoma cells Piao, et al., 2018 [111]
Cucurbitacin E Triterpenoid Anti-cancer and immunomodulatory actions Attard, et al., 2015 [112]
Isocucurbitacin B Triterpenoid Cytotoxic Bean, et al., 1985 [113]
β-sitosterol Phytosterol Anti-cancer and anti-atherogenic Mahaddalkar, et al., 2015 [114], Zhao, et al., 1990 [115]
Stigmasterol Phytosterol Anti-cancer and anti-trypanosomal Aminu , et al., 2017 [116]
23, 24-dihydrocucurbitacin D Triterpenoid Anti-inflammatory activity Park, et al., 2004 [117]
Table 7 Phytochemical constituents in Trichosanthes cucumerina L.
Constituents Class Bioactivity References
6-Shogaol Phenol Anti-inflammatory, anti-cancer and anti-oxidant Li, et al., 2012 [121], Zhu, et al., 2013 [122], Bak, et al., 2012 [123]
6-Gingerol Phenol Anti-cancer, anti-inflammatory and anti-oxidant activity Weng, et al., 2014 [124]
Zingiberol Sesquiterpene alcohol Anti-cancer activity Ezebuo, et al., 2016 [125]
β-phellandrene Monoterpene Anti-bacterial activity Utegenova, et al., 2018 [126]
α-zingiberene Sesquiterpene Anti-cancer activity Aras, et al., 2014 [127]
Ar-curcumine Sesquiterpene Anti-oxidant and anti-microbial activity El-Baroty, et al., 2010 [128]
β-bisabolene Sesquiterpene Cytotoxicity against breast cancer cells Yeo, et al., 2015 [129]
Gingerenones A, B & C Diarylheptenones Anti-fangal activity Endo, et al., 1990 [130]
Isogingerenone B Diarylheptenones Anti-fangal activity Endo, et al., 1990 [130]
Hexahydrocurcumin Diarylheptenones Anti-inflammatory and antioxidant Li, et al., 2012 [121]
Gingerdiols Phenols Anti-microbial activity Pubchem [131]
6-gingesulphonic acid Methoxy phenols Anti-ulcer property Yoshikawa, et al., 1994 [132]
Gingerglycolipids A, B & C Glycerol Anti-ulcer property Yoshikawa, et al., 1994 [133]
Paradols Ketone Anti-oxidative and anti-cancer Pubchem [134]
Farnesol Alcohol Apoptotic activity Rioja, et al., 2000 [134]
Geraniol glycosides Terpene glycoside
α-santalol Sesquiterpene Chemoprevention and antifungal activity Kim, et al., 2017 [103]
β-eudesmol Sesquiterpene Anti-inflammatory activity Kim, et al., 2018 [135]
Nerolidol Sesquiterpene Anti-inflammatory activity Pubchem [136]
Elemol Sesquiterpene Insecticidal activity Pubchem [137]
1,8 cineole Phenol Repellent Tripathy, et al., 2001 [90]
α-pinene Monoterpene Anti-inflammatory and anti-microbial activity Pubchem [78], Silva, et al., 2012 [138]
β-pinene Monoterpene Anti-microbial activity Silva, et al., 2012 [138]
Camphene Monoterpene Anti-microbial activity Pubchem [139]
Sabinene Monoterpene Anti-oxidant and repellent Jeramillo, et al., 2012 [82]
Limonene Cyclohexene Anti-crcinogenic Elson, et al., 1988 [140]
Myrcene Monoterpene Analgesic activity Lorenzetti, et al., 1991 [141]
Table 8 Phytochemical constituents in Zingiber officinale Roscoe
[1]   Fennell CW, Lindsey KL, McGaw LJ, et al. Assessing African medicinal plants for efficacy and safety: pharmacological screening and toxicology. J Ethnopharmacol 2004, 94: 205-217.
[2]   Anjana S, Thoppil JE.Cytological, phytochemical, pharmacological and in vitro regeneration studies on Pogostemon Deccanensis (Panigrahi) Press (Lamiaceae). Doctoral dissertation, University of Calicut 2016: 4.
[3]   Borneo R, León AE, Aguirre A, et al. Antioxidant capacity of medicinal plants from the Province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem 2009, 112: 664-670.
[4]   Siddha MM. Murugesan M.>Indian medicine, Medicinal Plants Division, Homeopathy 1936: 652-653.
[5]   Gibbons RV.Dengue conundrums. Int J Antimicrob Agents 2010, 365: 36-39.
[6]   Gubler DJ.Dengue and Dengue hemorrhagic fever. Clin Microbiol Rev 1998, 11: 480-496.
[7]   Tang LI, Ling AP, Koh RY, et al. Screening of anti-Dengue activity in methanolic extracts of medicinal plants. BMC Complement Altern Med 2012, 12: 3.
[8]   accessed on 28th July 2018.
[9]   Mahadevan H, Palraj V.Literature review on Siddha herbal formulations (Kudineer) available for the management of Dengue. Int J Pharmacol 2016, 5: 96.
[10]   Anbarasu K, Manisenthil KK, Ramachandran S.Antipyretic, anti-inflammatory and analgesic properties of nilavembu kudineer choornam: a classical preparation used in the treatment of chikungunya fever. Asian Pac J Trop Med 2011, 4: 819-823.
[11]   Deng WL.Preliminary studies on the pharmacology of the Andrographis product dihydroandrographolide sodium succinate. New Lett Chin Herb Med 1978, 8: 26-28.
[12]   Poolsup N, Suthisisang C, Prathanturarug S, et al. Andrographis paniculata in the symptomatic treatment of uncomplicated upper respiratory tract infection: systematic review of randomized controlled trails. J Clin Pharm Ther 2004, 29: 37-45.
[13]   Kumar S, Patil HS, Sharma P, et al. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of P-13 kinase/Akt signaling pathway. Curr Mol Med 2012, 12: 952-966.
[14]   Levita J, Nawawi AA, Mutalib A, et al. Andrographolide: a review of its anti-inflammatory activity via inhibition of NF-kappaB activation from computational chemistry aspects. Int J Pharm 2010, 6: 569-576.
[15]   Shen K, Liu T, Xu C, et al. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins. Yao Xue Xue Bao 2009, 44: 973-979.
[16]   Singha PK, Roy S, Dey S.Antimicrobial activity of Andrographis paniculata. Fitoterapia 2003, 74: 692-694.
[17]   Rana AC, Avadhoot Y.Hepatoprotective effects of Andrograhphis paniculata against carbon tetrachloride-induced liver damage. Arch Pharm Res 1991, 14: 93-95.
[18]   Puri A, Saxena R, Saxena RP, et al. Immunostimulant agents from Andrographis paniculata. J Natu Prod 1993, 56: 995-999.
[19]   Akbarsha MA, Murugaian P.Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother Res 2000, 14: 432-435.
[20]   Indian Council of Medical Research. Quality Standards of Indian Medicinal Plants, ICMR, New Delhi 2010, 8: 55-56, 255-263, 348.
[21]   The Siddha formulary of India Part I, The controller of Publications, Delhi 2011: 185, 174, 178, 193.
[22]   Reddy VL, Reddy SM, Ravikanth V, et al. A new bis-andrographolide ether from Andrographis paniculata Nees and evaluation of anti-HIV activity. Nat Prod Res 2005, 19: 223-230.
[23]   Sule A, Ahmed QU, Latip J, et al. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharm Biol 2012, 50: 850-856.
[24]   Xie Y, Yang W, Tan F.Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 2015, 22: 132-149.
[25]   Li HN, Nie FF, Liu W, et al. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology 2009, 257: 80-85.
[26]   Lin CC, Shieh DE.The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Ame J Chin Med 1996, 24: 31-36.
[27]   M LW.New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 2009, 35: 57-68.
[28]   Shieh DE, Liu LT, Lin CC.Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res 2000, 20: 2861-2865.
[29]   Didry N, Dubreuil L, Pinkas M.Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 1994, 69: 25-28.
[30]   Ali SM, Khan AA, Ahmed I, et al. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 2005, 4: 20.
[31]   Agoramoorthy G, Chandrasekaran M, Venkatesalu V, et al. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol 2007, 38: 739-742.
[32]   Bagdas D, Ozboluk HY, Cinkilic N, et al. Antinociceptive effect of chlorogenic acid in rats with painful diabetic neuropathy. J Med Food 2014, 17: 730-732.
[33]   Sowmiya R, Balasubramani G, Deepak P, et al. Clastogenic activity of caffeic acid and its relationship to hydrogen peroxide generated during autooxidation. Mutat Res 1983, 116: 333-339.
[34]   Takaba K, Hirose M, Yoshida Y, et al. Effects of n-tritriacontane-16, 18-dione, curcumin, chlorophyllin, dihydroguaiaretic acid, tannic acid and phytic acid on the initiation stage in a rat multi-organ carcinogenesis model. Cancer Lett 1997, 113: 39-46.
[35]   Hanham AF, Dunn BP, Stich HF.Clastogenic activity of caffeic acid and its relationship to hydrogen peroxide generated during autooxidation. Mutat Res 1983, 116: 333-339.
[36]   Jiang RW, Lau KM, Hon PM, et al. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr Med Chem 2005, 12: 237-246.
[37]   Danino O, Gottlieb HE, Grossman S, et al. Antioxidant activity of 1, 3-dicaffeoylquinic acid isolated from Inula viscosa. Food Res Int 2009, 42: 1273-1280.
[38]   Deepak M, Handa SS.Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother Res 2000, 14: 463-465.
[39]   Kim HJ, Chen F, Wang X, et al. Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. J Agric Food Chem 2005, 53: 7691-7695.
[40]   Indian Council of Medical Research. Quality Standards of Indian Medicinal Plants Vol 4, ICMR, New Delhi 2006, 252.
[41]   Siddha formulary of India Part II, The controller of Publications, Delhi 2011, 296, 299, 309, 312.
[42]   Dos Santos DS, Oberger JV, Niero R, et al. Seasonal phytochemical study and antimicrobial potential of Vetiveria zizanioides roots. Acta Pharm 2014, 64: 495-501.
[43]   De Falco E, Mancini E, Roscigno G, et al. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules 2013, 18: 14948-14960.
[44]   Kaushal S.Detection and chemical transformations of a few terpenoids. Doctoral dissertation, Punjab Agricultural University, Ludhiana.
[45]   Dwivedi GR, Gupta S, Roy S, et al. Tricyclic sesquiterpenes from Vetiveria zizanoides (L.) Nash as antimycobacterial agents. Chem Biol Drug Des 2013, 82: 587-594.
[46]   Khalil MA, Ayoub SM.Analysis of the essential oil of Vetiveria nigritana (Benth.) Stapf root growing in Sudan. J Med Plants Res 2011, 5: 7006-7010.
[47]   Quality Standards of Indian Medicinal Plants, Vol. 1, ICMR, New Delhi, 2003, 89-94.
[48]   Gupta MB, Palit TK, Singh N, et al. Pharmacological studies to isolate the active constituents from Cyperus rotundus possessing anti-inflammatory, anti-pyretic and analgesic activities. Indian J Med Res 1971, 59: 76-82.
[49]   Thebtaranonth C, Thebtaranonth Y, Wanauppathamkul S, et al. Antimalarial sesquiterpenes from tubers of Cyperus rotundus: structure of 10, 12-peroxycalamenene, a sesquiterpene endoperoxide. Phytochemistry 1995, 40: 125-128.
[50]   Ayurvedic Pharmacopoeia of India. Part I. New Delhi: government of India, ministry of health and family welfare, department of Indian systems of medicine and homeopathy 2001, 115-117.
[51]   Ahn JH, Lee TW, Kim KH, et al. 6-Acetoxy Cyperene, a Patchoulane‐type Sesquiterpene isolated from Cyperus rotundus Rhizomes induces caspase‐dependent apoptosis in human ovarian cancer cells. Phytother Res 2015, 29: 1330-1338.
[52]   Essien EE, Thomas PS, Ascrizzi R, et al. Senna occidentalis (L.) Link and Senna hirsuta (L.) HS Irwin &Barneby: constituents of fruit essential oils and antimicrobial activity. Nat Prod Res 2018: 1-4.
[53]   Chandra M, Prakash O, Kumar R, et al. β-Selinene-Rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines 2017, 4: 52.
[54]   Berger RG.Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer Science & Business Media 2007.
[55]   Al-Snafi AE.A review on Cyperus rotundus A potential medicinal plant. J Pharm 2016, 6: 32-48.
[56]   Hikino H, Aota K.4α, 5α-Oxidoeudesm-11-en-3α-ol, sesquiterpenoid of Cyperus rotundus. Phytochem 1976, 15: 1265-1266.
[57]   Khoi NK, Cyperus L, In: de Padua, et al. Plant resources of South-East Asia No. 12(1): Medicinal and poisonous plants 1. Backhuys Publisher, The Netherland 1999: 222-229.
[58]   Kilani S, Abdelwahed A, Chraief I, et al. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J Essent Oil Res 2005, 17: 695-700.
[59]   Sahu S, Singh J, Kumar S.New terpenoid from the rhizomes of Cyperus Scariosus. Int J Chem Eng Appl 2010, 1: 25.
[60]   . accesed on: 26th July 2018.
[61]   Seo YJ, Jeong M, Lee KT, et al. Isocyperol, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced inflammatory responses via suppression of the NF-κB and STAT3 pathways and ROS stress in LPS-stimulated RAW 264.7 cells. Int J Immunopharmacol 2016, 38: 61-69.
[62]   Hiking H, Aota K, Kuwano D, et al. Structure and absolute configuration of α-rotunol and β-rotunol, sesquiterpenoids of Cyperus rotundus. Tetrahedron 1971, 27: 4831-4836.
[63]   Ross IA.Cyperus rotundus. In Medicinal Plants of the World. Humana Press, Totowa NJ. 2003, 209-226.
[64]   Kittayaruksakul S, Zhao W, Xu M, et al. Identification of three novel natural product compounds that activate PXR and CAR and inhibit inflammation. Pharm res 2013, 30: 2199-2208.
[65]   Jyothi B, Sudarsanam G, Sitaram B.Pharmacognosy of a local market sample of Parpataka Mollugo cerviana (L.) Ser Phcog J 2010, 2: 233-239.
[66]   Pavithra PS, Janani VS, Charumathi KH, et al. Antibacterial activity of plants used in Indian herbal medicine. Int J Green Pharm 2010, 4: 22-28.
[67]   Sadique J, Chandra T, Thenmozhi V, et al. The anti-inflammatory activity of Enicostemma littorale and Mollugo cerviana. Biochem Med Metabc Biol 1987, 37: 167-176.
[68]   An F, Wang S, Tian Q, et al. Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncol Lett 2015, 10: 2627-2633.
[69]   Xiao Q, Piao R, Wang H, et al. Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK Orientin-mediated Nrf2/HO-1 signal alleviates H2O2-induced oxidative damage via induction of JNK and PI3K/AKT activation. Int J Biol Macromol 2018, Online.
[70]   Law BN, Ling AP, Koh RY, et al. Neuroprotective effects of orientin on hydrogen peroxide-induced apoptosis in SH-SY5Y cells. Mol Med Rep 2014, 9: 947-954.
[71]   accessed on 26th July 2018.
[72]   Gazola AC, Costa GM, Zucolotto SM, et al. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomed Pharmacother 2018, 100: 388-393.
[73]   Tao Y, Cai H, Li W, et al. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Anal Bioanal Chem 2015, 407: 6081-6093.
[74]   Indian Council of Medical Research. Quality Standards of Indian Medicinal Plants, Vol. 8, ICMR, New Delhi 2010, 255-263, 348.
[75]   Government of India, Ministry of Health and Family Welfare, Department of Indian Systems of Medicine and Homeopathy. The Ayurvedic Pharmacopoeia of India. Part I, vol. III 1st edn. New Delhi, 2001, 115-117.
[76]   Sharma PV. Susruta-Samhita (With englishtranslation of text and Dalhana’’s commentary along with critical notes), vol. I. Chaukhambha Visvabharathi, Oriental Publishers and Distributors 1999, 331-335, 358-363.
[77]   Bang JS, Oh da H, Choi HM, et al. Anti-inflammatory and antiarthritic effects of piperine in human interleukin1 beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther 2009, 11: R49.
[78]   Rodgers G, Doucette CD, Spurrell DR, et al. Immunomodulatory effects of piperine on dendritic cell function 2009: 50-36.
[79]   Meriga B, Parim B, Chunduri VR, et al. Antiobesity potential of Piperonal: promising modulation of body composition, lipid profiles and obesogenic marker expression in HFD-induced obese rats. Nutr Metab (Lond) 2017, 14: 72.
[80]   accessed on 26th July 2018.
[81]   accessed on 26th July 2018
[82]   Jaramillo Colorado BE, Martelo IP, Duarte E.Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J Agric Food Chem 2012, 60: 6364-6368.
[83]   Sun J.D-Limonene: safety and clinical applications. Alter Med Rev 2007, 12: 259.
[84]   accessed on 26th July 2018.
[85]   Kim DS, Lee HJ, Jeon YD, et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med 2015, 43: 731-742.
[86]   accessed on 26th July 2018.
[87]   Zeng LB, Zhang ZR, Luo ZH, et al. Antioxidant activity and chemical constituents of essential oil and extracts of Rhizoma homalomenae. Food Chem 2011, 125: 456-463.
[88]   accessed on 26th July 2018.
[89]   Abdulazeez MA, Sani I, James BD, et al. Black Pepper (Piper nigrum L.) Oils. Essential Oils Food Preservation, Flavor and Safety 2016, 277-285.
[90]   Tripathi AK, Prajapati V, Aggarwal KK, et al. Toxicity, feeding deterrence, and effect of activity of 1, 8-cineole from Artemisia annua on progeny production of Tribolium castanaeum (Coleoptera: Tenebrionidae). J Econ Entomol 2001, 94: 979-983.
[91]   Silva M, Ribeiro FP, Medeiros MA, et al. The vasorelaxant effect of p-Cymene in rat aorta involves potassium channels. Sci World J 2015, 2015: 458080.
[92]   accessed on 26th July 2018.
[93]   2018. accessed on 26th July
[94]   Nakatani N, Inatani R, Ohta H, et al. Chemical constituents of peppers (Piper spp.) and application to food preservation: naturally occurring antioxidative compounds. Environ Health Perspect 1986, 67: 135.
[95]   Reddy SV, Srinivas PV, Praveen B, et al. Antibacterial constituents from the berries of Piper nigrum. Phytomedicine 2004, 11: 697-700.
[96]   Siddiqui BS, Gulzar T, Mahmood A, et al. New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem Pharm Bull 2004, 52: 1349-1352.
[97]   National Center for Biotechnology Information. PubChemBioAssay Database; AID=453016, (accessed July 25,2018).
[98]   Hwang KS, Kim YK, Park KW, et al. Piperolein B and piperchabamide D isolated from black pepper (Piper nigrum L.) as larvicidal compounds against the diamondback moth (Plutella xylostella). Pest Manag Sci 2017, 73: 1564-1567.
[99]   Mourad AA, Nakamura S, Ueno T, et al. Adipogenetic effects of retrofractamide A derivatives in 3T3-L1 cells. Bioorg Med Chem Lett 2013, 23: 4813-4816.
[100]   Rho MC, Lee SW, Park HR, et al. ACAT inhibition of alkamides identified in the fruits of Piper nigrum. Phytochemistry 2007, 68: 899-903.
[101]   Standards of Indian Medicinal Plants, Vol 6, ICMR, New Delhi 2008, 242.
[102]   Sharma PV.Clinical Uses of Medicinal Plants, 1st edn. Varanasi: Chaukhambha Visvabharati (Orient Publishers and Distributors) 1996, 138-139.
[103]   Kim TH, Ito H, Hatano T, et al. New antitumor sesquiterpenoids from Santalum album of Indian origin. Tetrahedron 2006, 62: 6981-6989.
[104]   Kim TH, Hatano T, Okamoto K, et al. Antifungal and Ichthyotoxic Sesquiterpenoids from Santalum album Heartwood. Molecules 2017, 22: 1139.
[105]   Ochi T, Shibata H, Higuti T.Anti-Helicobacter p ylori compounds from Santalum album. J Natu Prod 2005, 68: 819-824.
[106]   Datta SK.Fatty acid composition in developing seeds of Trichosanthes cucumerina L. Biological Memoirs 1987, 13: 69-72.
[107]   Jiratchariyakul W, Frahm AW.Cucurbitacin B and dihydrocucurbilacin B from Trichosanthes cucumerina. J Pharm Sci 1992, 19: 12.
[108]   (accessed July 25, 2018).
[109]   Que J, Ye M, Zhang Y, et al. Bryonolic acid, a triterpenoid, protect against N-methyl-d-aspartate-induced neurotoxicity in PC12 cells. Molecules 2016, 21: 418.
[110]   Gatbonton-Schwager TN, Letterio JJ, Tochtrop GP.Bryonolic acid transcriptional control of anti-inflammatory and antioxidant genes in macrophages in vitro and in vivo. J Natu Prod 2012, 75: 591-598.
[111]   Piao XM, Gao F, Zhu JX, et al. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells. Inter J Molecular Med 2018, 42: 1018-1025.
[112]   Attard E, Martinoli MG.Cucurbitacin E, an experimental lead triterpenoid with anticancer, immunomodulatory and novel effects against degenerative diseases. A mini-review. Curr Top Med Chem 2015, 15: 1708-1713.
[113]   Bean MF, Antoun M, Abramson D, et al. Cucurbitacin B and isocucurbitacin B: cytotoxic components of Helicteres isora. J Natu Prod 1985, 48: 500.
[114]   Mahaddalkar T, Suri C, Naik PK, et al. Biochemical characterization and molecular dynamic simulation of β-sitosterol as a tubulin-binding anticancer agent. Eur J Pharmacol 2015, 760: 154-162.
[115]   Zhao J, Zhang CY, Xu DM, et al. The antiatherogenic effects of components isolated from pollen typhae. Thromb Res 1990, 57: 957-966.
[116]   Aminu R, Umar IA, Rahman MA, et al. Stigmasterol retards the proliferation and pathological features of Trypanosoma congolense infection in rats and inhibits trypanosomal sialidase in vitro and in silico. Biomed Pharmacother 2017, 89: 482-489.
[117]   Park CS, Lim H, Han KJ, et al. Inhibition of nitric oxide generation by 23, 24-dihydrocucurbitacin D in mouse peritoneal macrophages. J Pharmacol Exp Ther 2004, 309: 705-710.
[118]   Yamahara J, Huang Q, Li Y, et al. Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem Pharm Bull 1990, 38: 430-431.
[119]   Ali BH, Blunden G, Tanira MO, et al. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 2008, 46: 409-420.
[120]   Kumar G, Karthik L, Rao KB.A review on pharmacological and phytochemical properties of Zingiber officinale Roscoe (Zingiberaceae). J Pharm Res 2011, 2963-2966.
[121]   Li F, Nitteranon V, Tang X, et al. In vitro antioxidant and anti-inflammatory activities of 1-dehydro-
[6]   -gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem 2012, 135: 332-337.
[122]   Zhu Y, Warin RF, Soroka DN, et al. Metabolites of ginger component
[6]   -shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. PLoS one 2013, 8: 54677.
[123]   Bak MJ, Ok S, Jun M, et al. 6-shogaol-rich extract from ginger up-regulates the antioxidant defense systems in cells and mice. Molecules 2012, 17: 8037-8055.
[124]   Weng CJ, Wu CF, Huang HW, et al. Anti‐invasion effects of 6‐shogaol and 6‐gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 2010, 54: 1618-1627.
[125]   Ezebuo FC, Lukong CB, Uzochukwu IC, et al. In silico investigations revealed four potential colon cancer drugs from phytochemicals in Zingiber officinale. Int J Phytomed 2016, 8: 435-443.
[126]   Utegenova GA, Pallister KB, Kushnarenko SV, et al .Chemical composition Chemical composition and antibacterial activity of essential oils from Ferula L. Molecules 2018, 23: pii: E1679.
[127]   Aras A, Iqbal MJ, Naqvi SK, et al. Anticancer activity of essential oils: targeting of protein networks in cancer cells. Asian Pac J Cancer Prev 2014, 15: 8047-8050.
[128]   El-Baroty GS, Abd HH, El-Bakyl RS, et al. Sale Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem Res 2010, 4: 167-174.
[129]   Yeo SK, Ali AY, Hayward OA, et al. β‐Bisabolene, a Sesquiterpene from the Essential Oil Extract of Opoponax (Commiphora guidottii), Exhibits Cytotoxicity in Breast Cancer Cell Lines. Phytother Res 2016, 30: 418-425.
[130]   Endo K, Kanno E, Oshima Y.Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry 1990, 29: 797-799.
[131]   National Center for Biotechnology Information. Pubchem Compound Database; CID=11369949, (accessed July 24,2018).
[132]   Yoshikawa M, Yamaguchi S, Kunimi K, et al. Stomachic principles in ginger. III. An anti-ulcer principle, 6-gingesulfonic acid, and three monoacyldigalactosylglycerols, gingerglycolipids A, B, and C, from Zingiberis Rhizoma originating in Taiwan. Chem Pharm Bull 1994, 42: 1226-1230.
[133]   National Center for Biotechnology Information. Pubchem Compound Database; CID=94378, (accessed July 24,2018).
[134]   Rioja A, Pizzey AR, Marson CM, et al. Preferential induction of apoptosis of leukaemic cells by farnesol. FEBS Letters 2000, 467: 291-295.
[135]   Kim KY.Anti-inflammatory and ECM gene expression modulations of β-eudesmol via NF-κB signaling pathway in normal human dermal fibroblasts. Biomed Dermatol 2018, 2: 3.
[136]   (accessed July 24, 2018).
[137]   (accessed July 24, 2018).
[138]   Silva AC, Lopes PM, Azevedo MM, et al. Biological activities of a-pinene and β-pinene enantiomers. Molecules 2012, 17: 6305-6316.
[139]   (accessed July 24, 2018).
[140]   Elson CE, Maltzman TH, Boston JL, et al. Anti-carcinogenic activity of d-limonene during the initiation and promotion/progression stages of DMBA-induced rat mammary carcinogenesis. Carcinogenesis 1988, 9: 331-332.
[141]   Lorenzetti BB, Souza GE, Sarti SJ, et al. Myrcene mimics the peripheral analgesic activity of lemongrass tea. J Ethnopharmacol 1991, 34: 43-48.
[142]   (accessed on 19/07/2018).
[143]   (accessed on 20/07/2018).
[144]   (accessed on 7/06/2018).
[145]   Liu J, Wang ZT, Ji LL.In vivo and in vitro anti-inflammatory activities of neoandrographolide. Am J Chin Med 2007, 35: 317-328.
[146]   Sharma BK, Klinzing DC, Ramos JD.Zingiber officinale Roscoe Aqueous extract modulates matrix metallo proteinases and tissue inhibitors of metalloproteinases expressions in Dengue virus infected Cells: Implications for prevention of vascular permeability. Trop J Pharm Res 2015, 14: 1371-1381.
[147]   Kumar SS, Kumar BR, Mohan GK.Hepatoprotective effect of Trichosanthes cucumerina Var cucumerina L. on carbon tetrachloride induced liver damage in rats. J Ethnopharmacol 2009, 123: 347-350.
[1] Amir Poorgheysar, Moosa Sajjadi, Habib Shareinia, Moghadam Hosein Mohammdzadeh, Amin Nouroozi. The effect of hot intermittent cupping on pain, stiffness and disability of patients with knee osteoarthritis[J]. Traditional Medicine Research, 2019, 4(1): 25-32.
[2] Shang-Jin Song, Ren-Jie Xu, Li-Juan Xiu, Xuan Liu, Xiao-Qiang Yue. Network pharmacology-based approach to investigate the mechanisms of Yiyi Fuzi Baijiang Powder in the treatment of malignant tumors[J]. Traditional Medicine Research, 2018, 3(6): 295-306.
[3] Xu Wei, Chai Ni, Cheng Yue-Lei, Yang Qiong, Zhu Hui-Rong. Analysis on the principles of differentiation and prescription of traditional Chinese medicine in the treatment of cancerous fever[J]. Traditional Medicine Research, 2017, 2(1): 41-50.