Please wait a minute...
Traditional Medicine Research  2018, Vol. 3 Issue (6): 260-272    DOI: 10.12032/TMR201814086
Modernization of Traditional Medicine     
Recent advances in network pharmacology applications in Chinese herbal medicine
Jian Hao1,*(), Shi-Jun Li1
1 The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China.
Download: HTML     PDF(875KB)
Export: BibTeX | EndNote (RIS)      

Network pharmacology is a new discipline based on the theory of systems biology and network analysis of biological systems to design the drugs. It comprehensively observes the intervention and influence of drugs on the disease network, and reveals the mystery of multi-molecular drugs synergistically acting on disease. These concepts reflect the ideas of multi-component, multi-target and system regulation, and have many similarities with the research ideas of traditional Chinese medicine, which focuses on syndrome differentiation and treatment, emphasizes the overall understanding of the etiology and pathogenesis. Network pharmacology can be used to predict and identify the target and active component of traditional herbal medicine, to clarify the mechanism of action, to scientifically explain the rules of the prescription, to explore the rules of real-world prescription, to discover new indications and new active compounds, and to study drug relocation, etc. The applications of network pharmacology in traditional herbal medicine were systematically summarized to demonstrate the significant value in these areas.

Key wordsNetwork pharmacology      Applications      Traditional herbal medicine      Multi-molecular drugs      Traditional Chinese medicine     
Published: 04 November 2018
Corresponding Authors: Hao Jian     E-mail:
Cite this article:

Jian Hao, Shi-Jun Li. Recent advances in network pharmacology applications in Chinese herbal medicine. Traditional Medicine Research, 2018, 3(6): 260-272. doi: 10.12032/TMR201814086

URL:     OR

Figure 1 The main researches of Chinese herb medicine before (A) and after (B)
Figure 2 The main process of network pharmacology in the research of Chinese herb medicine
Type Name Website Function
Database TCMSP [2]
TCMDatabase@Taiwan [3]
ChEMBL [4]
Super Natural II [5]
TTD [7]
HIT [8]
PDTD [10]
Polysearch [11]
Drugbank [12]
Reaxys [14]
TCMGeneDIT [15]
TCM-Mesh [16]
ChemMapper [17]
PharmMapper [18]
Look for the ingredients
Find and predict the targets
Database GenBank [19]
GAD [20]
Genecard [21]
OMIM [22]
Disease-associated gene
Database DisGeNET [23]
String [24]
BioGRID [25]
Interaction of genes
Database HPRD [26]
PDZBase [27]
MINT [28]
PIPs [29]
DIP [30]
HAPPI [31]
DIPOS [32]
Protein-protein interaction
Database Biocarta [33]
KEGG [34]
Signal path analysis
Saftware DrugCIPHER [35]
Drugable [36]
Autodock [38]
Drug Discovery [39]
Predict the targets
Saftware Cytoscape [40]
Pajek [41]
NAViGaTOR [42]
IPA [43]
NetMiner [44]
NetworkX [45]
Osprey [46]
Gephi [47]
GuESS [48],
QuACN [50]
Network visualization tools
Table 1 The main databases and tools for traditional Chinese medicine research
Figure 3 The main applications of network pharmacology in the researches of Chinese herb medicine
[1]   Hopkins AL.Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008, 4: 682.
doi: 10.1038/nchembio.118
[2]   Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014, 6: 13.
doi: 10.1186/1758-2946-6-13 pmid: 4001360
[3]   TCM Database@Taiwan. The world's largest traditional Chinese medicine database for drug screening in silico. PLoS ONE 2014, 6: e15939.
doi: 10.1371/journal.pone.0015939 pmid: 21253603
[4]   Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2011, 40: D1100-D1107.
doi: 10.1093/nar/gkr777 pmid: 21948594
[5]   Banerjee P, Erehman J, Gohlke BO, et al. Super Natural II-a database of natural products. Nucleic Acids Res 2014, 43: D935-D939.
[6]   Xue R, Fang Z, Zhang M, et al. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2012, 41: D1089-D1095.
doi: 10.1093/nar/gks1100 pmid: 23203875
[7]   Chen X, Ji ZL, Chen YZ.TTD: therapeutic target database. Nucleic Acids Res 2002, 30: 412-415.
doi: 10.1093/nar/30.1.412 pmid: 11752352
[8]   Hao Y, Li Y, Hong K, et al. HIT: linking herbal active ingredients to targets. Nucleic Acids Res 2011, 39: D1055-D1059.
doi: 10.1093/nar/gkq1165 pmid: 21097881
[9]   Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 2016, 44: D380-D384.
doi: 10.1093/nar/gkv1277 pmid: 4702904
[10]   Gao Z, Li H, Zhang H, et al. PDTD: a web-accessible protein database for drug target identification. BMC bioinformatics 2008, 9: 104.
doi: 10.1186/1471-2105-9-104
[11]   Cheng D, Knox C, Young N, et al. PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res 2008, 36: W399-W405.
doi: 10.1093/nar/gkn296 pmid: 2447794
[12]   Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006, 34: D668-D672.
doi: 10.1093/nar/gkj067 pmid: 16381955
[13]   Liu Z, Guo F, Wang Y, et al. Batman-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Sci Rep 2016, 6: 21146.
doi: 10.1038/srep21146 pmid: 35025
[14]   Goodman J.Computer software review: Reaxys. J Chem Inf Model 2009, 49: 2897-2898.
doi: 10.1021/ci900437n
[15]   Fang YC, Huang HC, Chen HH, et al. TCMGeneDIT: a database for associated traditional Chinese medicine, gene and disease information using text mining. BMC Complement Altern Med. 2008, 8: 58.
doi: 10.1186/1472-6882-8-58
[16]   Zhang R, Yu S, Bai H, et al. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep 2017, 7: 2821.
doi: 10.1038/s41598-017-03039-7 pmid: 5460194
[17]   Gong J, Cai C, Liu X, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 2013, 29: 1827-1829.
doi: 10.1093/bioinformatics/btt270 pmid: 23712658
[18]   Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010, 38: W609-W614.
doi: 10.1093/nar/gkq300 pmid: 20430828
[19]   Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res 2008, 36: D25.
[20]   Becker KG, Barnes KC, Bright TJ, et al. The genetic association database. Nature genetics 2004, 36: 431.
doi: 10.1038/ng0504-431 pmid: 15118671
[21]   Rebhan M, Chalifa-Caspi V, Prilusky J, et al. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 1998, 14: 656-664.
doi: 10.1093/bioinformatics/14.8.656
[22]   Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005, 33: D514-D517.
doi: 10.1093/nar/gki033 pmid: 15608251
[23]   Pi?ero J, Queralt-Rosinach N, Bravo à, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, 2015: bav028.
doi: 10.1093/database/bav028 pmid: 4397996
[24]   Wang W, Yang J, Muntz R.STING: A statistical information grid approach to spatial data mining. International Conference on Very Large Data Bases 1997, 97: 186-195.
[25]   Stark C, Breitkreutz BJ, Reguly T, et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34: D535-D539.
doi: 10.1093/nar/gkj109 pmid: 1347471
[26]   Baolin L, Bo H.HPRD: a high performance RDF database. International Conference on Network and Parallel Computing. Springer, Berlin, Heidelberg, 2007: 364-374.
[27]   Beuming T, Skrabanek L, Niv MY, et al. PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics 2004, 21: 827-828.
[28]   Chatr-Aryamontri A, Ceol A, Palazzi LM, et al. MINT: the Molecular INTeraction database. Nucleic Acids Res, 2006, 35: D572-D574.
doi: 10.1093/nar/gkl1094 pmid: 1802621
[29]   McDowall MD, Scott MS, Barton GJ. PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 2008, 37: D651-D656.
[30]   Xenarios I, Rice DW, Salwinski L, et al. DIP: the database of interacting proteins. Nucleic Acids Res 2000, 28: 289-291.
doi: 10.1093/nar/28.1.289
[31]   Chen JY, Mamidipalli SR, Huan T.HAPPI: an online database of comprehensive human annotated and predicted protein interactions. BMC genomics 2009, 10: S16.
doi: 10.1186/1471-2164-10-S1-S16 pmid: 19594875
[32]   Sapkota A, Liu X, Zhao XM, et al. DIPOS: database of interacting proteins in Oryza sativa. Molecular BioSystems 2011, 7: 2615-2621.
doi: 10.1039/c1mb05120b pmid: 21713282
[33]   Nishimura D.BioCarta. Biotech Software & Internet Report: The Computer Software Journal for Scient, 2001, 2: 117-120.
[34]   Kanehisa M, Goto S.KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27
[35]   Zhao S, Li S.Network-based relating pharmacological and genomic spaces for drug target identification. PloS one 2010, 5: e11764.
doi: 10.1371/journal.pone.0011764 pmid: 2909904
[36]   Reardon S.Project ranks billions of drug interactions: drugable. com predicts mechanisms through computation. Nature 2013, 503: 449-451.
doi: 10.1038/503449a pmid: 24284710
[37]   Chen YZ, Zhi DG.Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 2001, 43: 217-226.
doi: 10.1002/(ISSN)1097-0134
[38]   Trott O, Olson AJ.AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010, 31: 455-461.
doi: 10.1002/jcc.21334 pmid: 3041641
[39]   Drews J.Drug discovery: a historical perspective. Science 2000, 287: 1960-1964.
doi: 10.1126/science.287.5460.1960 pmid: 10720314
[40]   Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[41]   Batagelj V, Mrvar A.Pajek-program for large network analysis. Connections 1998, 21: 47-57.
[42]   Jacknin L, Ericson MA. Virtual navigator, inertial angular measurement system: U.S. Patent 5,854,843.1998-12-29.
[43]   Thomas S, Bonchev D.A survey of current software for network analysis in molecular biology. Human genomics 2010, 4: 353.
doi: 10.1186/1479-7364-4-5-353 pmid: 3500165
[44]   Rohani VA, Hock OS.On social network web sites: definition, features, architectures and analysis tools. J Comp Engin 2009, 1: 3-11.
[45]   Hagberg A, Schult D, Swart P,et al. Networkx. High productivity software for complex networks. Webová strá nka https://networkx. lanl. gov/wiki, 2013.
[46]   Breitkreutz BJ, Stark C, Tyers M.Osprey: a network visualization system. Genome biology 2003, 4: R22.
doi: 10.1186/gb-2003-4-3-r22
[47]   Bastian M, Heymann S, Jacomy M.Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media 2009, 8: 361-362.
[48]   Adar E.GUESS: a language and interface for graph exploration. Proceedings of the SIGCHI conference on Human Factors in computing systems. 2006: 791-800.
[49]   Borgatti SP, Everett MG, Freeman LC.Ucinet for Windows: Software for social network analysis. 2002.
[50]   Mueller LAJ, Kugler KG, Dander A, et al. QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 2010, 27: 140-141.
doi: 10.1093/bioinformatics/btq606 pmid: 21075747
[51]   Wu LH, Gao XM, Wang LL, et al. Prediction of multi-component target of aconite and network pharmacology research. Chin J Tradit Chin Med 2011, 36: 2907-2910.
[52]   Li H, Zhao L, Zhang B, et al. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid Based Complement Alternat Med 2014, 2014: 495840.
doi: 10.1155/2014/495840 pmid: 3914348
[53]   Wang L, Li Z, Shao Q, et al. Dissecting active ingredients of Chinese medicine by content-weighted ingredient-target network. Mol Biosyst 2014, 10: 1905-1911.
doi: 10.1039/c3mb70581a pmid: 24781185
[54]   Li X, Wu L, Liu W, et al. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound. A network pharmacology study of Chinese medicine QiShenYiQi to reveal its underlying multi-compound, multi-target, multi-pathway mode of action. PLoS One 2014, 9: e95004/1.
[55]   Xiang Z, Sun H, Cai X, et al. The study on the material basis and the mechanism for anti-renal interstitial fibrosis efficacy of rhubarb through integration of metabonomics and network pharmacology. Mol Biosyst 2015, 11: 1067-1078.
doi: 10.1039/c4mb00573b pmid: 25630238
[56]   Sun H, Zhang A, Yan G, et al. Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Pharm Biomed Anal 2013, 75: 173179.
doi: 10.1016/j.jpba.2012.11.025 pmid: 23262417
[57]   Chen S, Wu S, Li W, et al. Investigation of the therapeutic effectiveness of active components in Sini decoction by a comprehensive GC/LC-MS based metabolomics and network pharmacology approaches. Mol Biosyst 2014, 10: 3310-3321.
doi: 10.1039/C4MB00048J
[58]   Mao Y, Hao J, Jin ZQ, et al. Network pharmacology-based prediction of active ingredients and potential targets of Chinese herbs on metastatic breast cancer patients. Oncotarget 2017: 15351.
doi: 10.18632/oncotarget.15351 pmid: 28212580
[59]   Gao L, Wang XD, Niu YY, et al. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci Rep 2016, 6: 24944.
doi: 10.1038/srep24944 pmid: 27143508
[60]   Gao L, Hao J, Niu YY, et al. Network pharmacology dissection ofmultiscale mechanisms of herbal medicines in stage IV gastric adenocarcinoma treatment. Medicine 2016, 95.
doi: 10.1097/MD.0000000000004389 pmid: 27583849
[61]   Zhu HX, Hao J, Chen D, et al. Molecular targets of Chinese herbs: a clinical study of metastatic colorectal cancer based on network pharmacology. Sci Rep 2018, 8: 7238.
doi: 10.1038/s41598-018-25500-x pmid: 29740162
[62]   Hao J, Jin Z, Zhu H, et al. Antiestrogenic activity of the Xi-Huang formula for breast cancer by targeting the estrogen receptor α. Cell Physiol Biochem 2018, 47: 2199-2215.
doi: 10.1159/000491533 pmid: 29975948
[63]   Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013, 145: 1-10.
doi: 10.1016/j.jep.2012.09.051 pmid: 23142198
[64]   Jin ZQ, Hao J, Yang X, et al. Higenamine enhances the antitumor effects of cucurbitacin B in breast cancer by inhibiting the interaction of AKT and CDK2. Oncol Rep 2018, 40: 2127-2136.
doi: 10.3892/or.2018.6629 pmid: 30106443
[65]   Ekins S, Rose J.In silico ADME / Tox : the state of the art. J Mol Graph Mod 2002, 20: 305.
doi: 10.1016/S1093-3263(01)00127-9 pmid: 11858639
[66]   Cruciani G, Pastor M, Guba W.VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci 2000, 11: 29.
doi: 10.1016/S0928-0987(00)00162-7 pmid: 11033425
[67]   Zhuang XM, Xiao JH, Zhang ZQ, et al. VolSurf software and its application in virtual high-throughput screening oournal Pharm Toxic 2005, 19: 156.
[68]   Xu HY, Tang SH, Chen JX, et al. Research ideas and strategies of traditional Chinese medicine “group-effect relationship” based on metabolomics. World Sci Technol Mod Tradit Chin Med Mater Med 2011, 13( 1) : 30
[69]   Li S, Zhang ZQ, Wu LJ, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro- endocrine- immune network. IET Syst Biol 2007, 1: 51-60.
doi: 10.1049/iet-syb:20060032 pmid: 17370429
[70]   Zhou MM, Liu P, Jia W, et al. Evaluation of therapeutic effects of TCM based on metabolic variation. World Sci Technol Mod Tradit Chin Med Mater Med 2006, 8: 113-119.
[71]   Sun Y, Zhu R, Ye H, et al. Towards a bioinformatics analysis of anti-Alzheimer′s herbal medicines from a target network perspective. Brief Bioinform 2013, 14: 327-343.
doi: 10.1093/bib/bbs025
[72]   Gu J, Gui Y, Chen L, et al. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 2013, 8: e62839.
doi: 10.1371/journal.pone.0062839 pmid: 3636197
[73]   Zhang XZ, Xiao W, Xu XJ, et al. Study on the molecular mechanism of the Reduning Injection on the Influenza virus using the network pharmacology method. Acta Phys Chim Sin 2013, 29: 1415-1420.
doi: 10.3866/PKU.WHXB201304171
[74]   Agis-Torres A, Sollhuber M, Fernandez M, et al. Multi-target-directed ligands and other therapeutic strategies in the search of a real solution for Alzheimer’s disease. Curr Neuropharmacol 2014, 12: 2-36.
doi: 10.2174/1570159X113116660047 pmid: 323325222
[75]   Gu J, Gui Y, Chen L, et al. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One 2013, 8: e62839.
doi: 10.1371/journal.pone.0062839 pmid: 3636197
[76]   Gu J, Gui Y, Chen L, et al. CVDHD: a cardiovascular disease herbal database for drug discovery and network pharmacology. J Cheminf 2013, 5: 51.
doi: 10.1186/1758-2946-5-51 pmid: 24344970
[77]   Xu Y, Luo Q, Lin T, et al. U12, a UDCA derivative, acts as an anti-hepatoma drug lead and inhibits the m TOR/S6K1 and cyclin/CDK complex pathways. PLoS One 2014, 9: e113479.
doi: 10.1371/journal.pone.0113479 pmid: 4259312
[78]   Liu ZH, Chen SL.ER regulates an evolutionarily conserved apoptosis pathway. Biochem Biophys Res Commun 2010, 400: 34-38.
doi: 10.1016/j.bbrc.2010.07.132 pmid: 20691160
[79]   Wang Y, Gao XM, Zhang BL, et al. Building methodology for discovering and developing Chinese medicine based on network biology. China J Chin Mater Med 2011, 36: 228-231.
doi: 10.4268/cjcmm20110228 pmid: 21506427
[80]   Li S, Zhang B, Zhang NB.Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol 2011, 5: S10.
doi: 10.1186/1752-0509-5-S1-S10 pmid: 3121110
[81]   Li S, Zhang B, Jiang D, et al. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics 2010, 11: S6.
doi: 10.1186/1471-2105-11-S11-S6 pmid: 21172056
[82]   Li JW, Vederas JC.Drug discovery and natural products: end of anera or an endless frontier? Science 2009, 325: 161-165.
doi: 10.1126/science.1168243 pmid: 21870600
[83]   Li X, Wu LH, Fan YH, et al. Network pharmacology study of the main active ingredients of compound Danshen. Chin J Tradit Chin Mede 2011, 36: 2912-2915.
[84]   Liang YX, He YS, Jiang LZ, et al. L-type calcium channel channel antihypertensive drugs were found in traditional Chinese medicine using relocation strategy. Chin J Tradit Chin Med 2015, 40: 2650-2654.
[85]   Li X, Wu L, Fan X, et al. Network pharmacology study on major active compounds of Fufang Danshen formula. Zhongguo Zhong yao Zazhi 2011, 36: 2911-2915.
doi: 10.1007/s10570-010-9464-0 pmid: 22308672
[86]   Zhang X, Gu J, Cao L, et al. Network pharmacology study on the mechanism of traditional Chinese medicine for upper respiratory tract infection. Mol Biosyst 2014, 10: 2517-2525.
doi: 10.1039/c4mb00164h pmid: 25000319
[87]   Li S, Zhang ZQ, Wu LJ, et al. Understanding ZHENG in traditional Chinesemedicine in the context ofneuro-endocrine-immune network. IET Syst Biol 2007, 1: 51-60.
doi: 10.1049/iet-syb:20060032 pmid: 17370429
[88]   Ma T, Tan C, Zhang H, et al. Bridging the gap between traditional Chinese medicine and systems biology: the connection of cold syndrome and NEI network. Mol Biosyst 2010, 6: 613-619.
doi: 10.1039/b914024g pmid: 20237638
[89]   Li S.Network systems underlying traditional Chinese medicine syndrome and herb formula. Curr Bioinform 2009, 4: 188-196.
doi: 10.2174/157489309789071129
[90]   Zhang B, Wang X, Li S.An integrative platform of TCM network pharmacology and its application on a herbal formula, Qing-Luo-Yin. Evid Based Complement Alternat Med 2013, 2013: 456747.
doi: 10.1155/2013/456747 pmid: 23653662
[91]   Liu ZD, Jiang W, Tan Y, et al. Network pharmacology research strategy corresponding to rheumatoid arthritis cold and heat syndrome. Chin J Tradit Chin Med 2015, 30: 3191-3195.
[92]   Niu XY, Li J, Lu C, et al. Network pharmacology research on the mechanism of "drug-certification" for rheumatoid arthritis syndrome. Chin J Experim Formul 2012, 18: 299.
[93]   Wang M, Chen G, Lu C, et al. Rheumatoid arthritis with deficiency patternin traditionalChinese medicine shows correlationwith cold and hotpatterns in gene expression pro files. Evid Based Complement Alternat Med 2013, 20: 248650.
doi: 10.1155/2013/248650 pmid: 24174973
[94]   Chen QL, Lu YY, Zhang GB, et al. Characteristic analysis from excessiveto deficient syndromes in hepatocarcinoma underlying miRNA array data. Evid Based Complement Alternat Med 2013, 20: 324636.
doi: 10.1155/2013/324636 pmid: 3870617
[95]   Li Z, Zhang W, Wang Y, et al. A New Model of TCM Syndrome Research in Network Syndrome. Tianjin J Tradit Chin Med 2013, 6:787-790.
[96]   Li X, Wu LH, Fan YH, et al. Pharmacological study on the main active ingredients of compound Danshen prescription. Chin J Tradit Chin Med 2011, 36: 2911.
[97]   Dai W, Liu X, Zhang Z, et al. A two-level model for the analysis of syn drome of acute ischemic stroke: from diagnostic model to molecular mechanism. Evid Based Complement Alternat Med 2013, 2013: 293010.
doi: 10.1155/2013/293010 pmid: 23662126
[1] Su-Tong Liu, Su-Fang Zhang, Kai-Qi Su, Ying-Bin Luo, Zhi-Hong Fang, Yuan Fang, Jing Xu, Jian-Chun Wu, Yan Li. The effect of long-term traditional Chinese medicine treatment on disease-free survival of postoperative stage I-III lung cancer patients: a retrospective cohort study[J]. Traditional Medicine Research, 2019, 4(2): 91-98.
[2] Wei-Jie Xie, Yu-Mei Wu, Shuai-Shuai Chen, Jian Xu, Fang-Fang Yang, Yong-Ping Zhang, Xiao-Bo Sun. In vitro evaluation of transdermal permeation effects of Fu’s cupping therapy via six diffusion kinetics models[J]. Traditional Medicine Research, 2019, 4(1): 42-53.
[3] Liang-Jun Yang, Dao-Rui Hou, Ya Li, Zhi-Peng Hu, Yong Zhang. A network pharmacology approach to investigate the mechanisms of Si-Jun-Zi decoction in the treatment of gastric precancerous lesions[J]. Traditional Medicine Research, 2018, 3(6): 273-285.
[4] Shang-Jin Song, Ren-Jie Xu, Li-Juan Xiu, Xuan Liu, Xiao-Qiang Yue. Network pharmacology-based approach to investigate the mechanisms of Yiyi Fuzi Baijiang Powder in the treatment of malignant tumors[J]. Traditional Medicine Research, 2018, 3(6): 295-306.
[5] Yang Hu, Dan Chen. Analysis of the action mechanism of Fang Ji Huang Qi decoction in treating rheumatoid arthritis by network pharmacology[J]. Traditional Medicine Research, 2018, 3(6): 286-294.
[6] Yue Ji, Jun-Chen Li, Jing-Yan Meng, Xue-Rou Yan, Jian-ang Li, Qing-Yun Zhao, Kang Yang, Chun- Liu. Study of dual-directional regulatory effect of Banxia (Pinellia ternata) and Huanglian (Coptis chinensis) drug pair on gastrointestinal movement of mice[J]. Traditional Medicine Research, 2018, 3(3): 148-156.
[7] Wen-Qi Huang, Zhu Yang, Dong-Xin Tang, Feng-Xi Long, Li Luo, Bing Yang, Juan Li, Jie Chen. Pharmacological intervention of traditional Chinese medicine for the quality of life in patients with colorectal cancer: a systematic review and meta-analysis[J]. Traditional Medicine Research, 2018, 3(2): 95-105.
[8] Li-Lin Yang, Jie Gao, Hai-Wang Wu, Song-Ping Luo. History of recurrent miscarriage in traditional Chinese medicine literature[J]. Traditional Medicine Research, 2018, 3(2): 62-69.
[9] Tian Ran, Dai Liang, Shang Hong-Cai, Li You-Ping, Bian Zhao-Xiang. How to establish precise proprietary Chinese medicine in post-marketing reappraisal?[J]. Traditional Medicine Research, 2017, 2(4): 155-160.
[10] Zhai Jing-Bo, Li Jiang, Chen Jing. The applications of Bayesian models in real-world studies of traditional Chinese medicine: a primer[J]. Traditional Medicine Research, 2017, 2(2): 88-93.
[11] Yang Xue, Wu Xiong-Zhi. The combination of disease and Zheng (syndrome) on the basic of differentiation of six channels: a new pattern of disease diagnosis and treatment of traditional Chinese medicine[J]. Traditional Medicine Research, 2017, 2(2): 100-104.
[12] Xu Wei, Chai Ni, Cheng Yue-Lei, Yang Qiong, Zhu Hui-Rong. Analysis on the principles of differentiation and prescription of traditional Chinese medicine in the treatment of cancerous fever[J]. Traditional Medicine Research, 2017, 2(1): 41-50.
[13] Shang Hong-Cai, Wu Xiong-Zhi, Qiu Rui-Jin, Wang Ya-Han, Wang Yong-Yan. Traditional Chinese medicine should not be ignored during the development of precision medicine with Chinese characteristics[J]. Traditional Medicine Research, 2016, 1(3): 105-114.
[14] Liu Li-Juan, Zhou Chao, Song Fu-Cheng, Zhang Sen-Sen, Teng Wen-Jing, Zhuang Jing, Sun Chang-Gang, Si Hong-Zong. Molecular docking study on the molecular mechanism of rhaponticin for treatment of chronic myelocytic leukemia[J]. Traditional Medicine Research, 2016, 1(3): 122-127.
[15] Yang Dao-Zheng, Luan Xin-Yuan, Wang Shu-Bin. Epigenetic regulations of hematopoietic stem cells ageing and the regulation of traditional Chinese medicine[J]. Traditional Medicine Research, 2016, 1(2): 75-82.