Please wait a minute...
Traditional Medicine Research  2018, Vol. 3 Issue (6): 273-285    DOI: 10.12032/TMR201814087
Modernization of Traditional Medicine     
A network pharmacology approach to investigate the mechanisms of Si-Jun-Zi decoction in the treatment of gastric precancerous lesions
Liang-Jun Yang1, Dao-Rui Hou2, Ya Li3, Zhi-Peng Hu4, Yong Zhang5,*()
1Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
2The First People's Hospital of Xiangtan City, Xiangtan, Hunan, China.
3Lin’an Hospital of Traditional Chinese Medicine, Lin’an, Zhejiang, China.
4Chengdu University of Traditional Chinese Medicine, Chengdu, China.
5Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan China.
Download: HTML     PDF(1672KB)
Export: BibTeX | EndNote (RIS)      

Highlights

The Si-Jun-Zi decoction may exert a therapeutic effect on gastric precancerous lesions by intervening in the mucosal inflammation, cell apoptosis process, and cell proliferation.

Editor’s Summary

Gastric mucosal inflammation has the potential to promote the proliferation of gastric mucosal epithelial cells and inhibit their apoptosis. However, Si-Jun-Zi decoction may exert a therapeutic effect on these process via the multi-target network level.

Abstract

Objective: To find out the potential mechanisms of Si-Jun-Zi (SJZ) decoction in the treatment of gastric precancerous lesions (GPL). Methods: A network pharmacology approach was used to analyze the active compounds, drug targets and interacting pathways of SJZ decoction in treating GPL. The compounds and predicted targets of SJZ decoction were screened from TCMSP, and the disease targets were obtained from GeneCards. The therapeutic mechanisms of action of the SJZ decoction were analyzed by gene ontology (GO) enrichment, Kyoto encyclopedia of genes and genomes pathway enrichment analyses. Results: The results show that 111 compounds and 90 targets were obtained in this work. These targets were further mapped to 654 GO biological process terms and 21 remarkably pathways. Active compounds, targets, and pathways were used to construct a compound-target network, a target-pathways network, and an integrated GPL pathway. These results indicated that SJZ decoction may treat the dysfunctions of GPL mainly from intervening in the mucosal inflammation, cell apoptosis process, and cell proliferation. Conclusion: This work provided a novel approach to understand the pathogenesis of GPL and revealed the therapeutic mechanisms of SJZ decoction, which facilitate the modernization of herbal medicine for complex diseases in the future.



Key wordsNetwork pharmacology      Gastric precancerous lesions      Si-Jun-Zi decoction      Pathogenesis      Traditional Chinese medicine     
Published: 05 November 2018
Corresponding Authors: Zhang Yong     E-mail: 568958305@qq.com
Cite this article:

Liang-Jun Yang, Dao-Rui Hou, Ya Li, Zhi-Peng Hu, Yong Zhang. A network pharmacology approach to investigate the mechanisms of Si-Jun-Zi decoction in the treatment of gastric precancerous lesions. Traditional Medicine Research, 2018, 3(6): 273-285. doi: 10.12032/TMR201814087

URL:

https://www.tmrjournals.com/tmr/EN/10.12032/TMR201814087     OR     https://www.tmrjournals.com/tmr/EN/Y2018/V3/I6/273

Figure 1 GO analysis of target genes
The X-axis shows the enrichment counts of these terms, and the Y-axis shows the GO biological process terms of the target genes (Adjusted P-value < 0.01). GO, Gene ontology.
Figure 2 Compound-target network
Red nodes represent potential targets, purple nodes on behalf of herbal ingredients, and the dark lines represent the interactions between them. Node size is in proportion to its degree.
Figure 3 Target-pathway network
Blue nodes represent potential targets and red nodes represent the related pathways. Node size is in proportion to its degree.
Term Pathways Count Adjusted P-value
hsa05200 Pathways in cancer 46 < 0.001
hsa04151 PI3K-Akt signaling pathway 28 < 0.001
hsa04210 Apoptosis 19 < 0.001
hsa05206 MicroRNAs in cancer 19 < 0.001
hsa04115 p53 signaling pathway 18 < 0.001
hsa04668 TNF signaling pathway 18 < 0.001
hsa04068 FoxO signaling pathway 18 < 0.001
hsa04110 Cell cycle 17 < 0.001
hsa04066 HIF-1 signaling pathway 16 < 0.001
hsa04010 MAPK signaling pathway 16 < 0.001
hsa04620 Toll-like receptor signaling pathway 15 < 0.001
hsa04630 Jak-STAT signaling pathway 15 < 0.001
hsa05202 Transcriptional misregulation in cancer 14 < 0.001
hsa04060 Cytokine-cytokine receptor interaction 14 < 0.001
hsa04621 NOD-like receptor signaling pathway 12 < 0.001
hsa04012 ErbB signaling pathway 12 < 0.001
hsa04014 Ras signaling pathway 12 < 0.001
hsa04915 Estrogen signaling pathway 11 < 0.001
hsa04062 Chemokine signaling pathway 11 < 0.001
hsa05230 Central carbon metabolism in cancer 10 < 0.001
hsa04064 NF-kappa B signaling pathway 10 < 0.001
Table 1 The KEGG pathways of therapy target genes
Figure 4 Gastric precancerous lesions associated pathway
[1]   Cunningham SC, Kamangar F, Kim MP, et al. Survival after gastric adenocarcinoma resection: eighteen-year experience at a single institution. J Gastrointest Surg 2005, 9: 718-725.
doi: 10.1016/j.gassur.2004.12.002 pmid: 15862270
[2]   Yamaoka Y.How to eliminate gastric cancer-related death worldwide. Nat Rev Clin Oncol 2018, 15: 407-408
doi: 10.1038/s41571-018-0029-8
[3]   Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015, 136: E359-386.
doi: 10.1002/ijc.29210
[4]   Correa P.A human model of gastric carcinogenesis. Cancer Res 1988, 48: 3554-3560.
[5]   Marques-Silva L, Areia M, Elvas L, et al. Prevalence of gastric precancerous conditions: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2014, 26: 378-387.
doi: 10.1097/MEG.0000000000000065
[6]   de Vries AC, van Grieken NC, Looman CW, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology 2008, 134: 945-952.
doi: 10.1053/j.gastro.2008.01.071
[7]   Qi F, Li A, Inagaki Y, et al. Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer. Biosci Trends 2010, 4: 297-307.
pmid: 21248427
[8]   Wang X, Zhang A, Sun H.Future perspectives of Chinese medical formulae: chinmedomics as an effector. OMICS 2012, 16: 414-421
doi: 10.1089/omi.2011.0138 pmid: 22734809
[9]   Gao L, Hao J, Niu YY, et al. Network pharmacology dissection of multiscale mechanisms of herbal medicines in stage IV gastric adenocarcinoma treatment. Medicine (Baltimore) 2016, 95: e4389.
doi: 10.1097/MD.0000000000004389 pmid: 27583849
[10]   Yu X, Cui Z, Zhou Z, et al. Si-jun-zi decoction treatment promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Evid Based Complement Alternat Med 2014, 2014: 928579.
doi: 10.1155/2014/928579 pmid: 24876882
[11]   Liu L, Han L, Wong DY, et al. Effects of Si-Jun-Zi decoction polysaccharides on cell migration and gene expression in wounded rat intestinal epithelial cells. Br J Nutr 2005, 93: 21-29.
doi: 10.1079/BJN20041295 pmid: 15705221
[12]   Chang CH, Yu B, Su CH, et al. Coptidis rhizome and Si Jun Zi Tang can prevent Salmonella enterica serovar Typhimurium infection in mice. PLoS One 2014, 9: e105362.
doi: 10.1371/journal.pone.0105362 pmid: 25133542
[13]   Li L, Zou C, Zhou Z, et al. Effects of herbal medicine Sijunzi decoction on rabbits after relieving intestinal obstruction. Braz J Med Biol Res 2017, 50: e6331.
doi: 10.1590/1414-431X20176331 pmid: 5609600
[14]   Song FL, Lin YF, Li HR.Effect of Jiawei Sijunzi decoction based triple therapy on atrophic gastritis and expression of PCNA. China J Trad Chin Med Pharm 2009, 4: 367-369.
[15]   Ss ZN, Wang ZF, Luo XM.Meta-analysis of Modified Sijunzi Tang for Treating Chronic Atrophic Gastritis. Chin J Exp Tradi Med Formulae 2015, 21: 204-208.
[16]   Tang RY, Lin J.Status of clinical studies on treating precancerous lesions of gastric cancer with Chinese herbs. Trad Chin Med 2014, 3: 79-84.
doi: 10.12677/TCM.2014.34015
[17]   Hao DC, Xiao PG.Network pharmacology: a rosetta stone for traditional Chinese medicine. Drug Dev Res 2014, 75: 299-312.
doi: 10.1002/ddr.21214 pmid: 25160070
[18]   Chandran U, Patwardhan B.Network ethnopharmacological evaluation of the immunomodulatory activity of Withania somnifera. J Ethnopharmacol 2017, 197: 250-256.
doi: 10.1016/j.jep.2016.07.080 pmid: 27487266
[19]   Zuo H, Zhang Q, Su S, et al. A network pharmacology-based approach to analyse potential targets of traditional herbal formulas: An example of Yu Ping Feng decoction. Sci Rep 2018, 8: 11418.
doi: 10.1038/s41598-018-29764-1
[20]   Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014, 6: 13.
doi: 10.1186/1758-2946-6-13 pmid: 4001360
[21]   Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012, 13: 6964-6982.
doi: 10.3390/ijms13066964 pmid: 22837674
[22]   Alam MA, Al-Jenoobi FI, Al-Mohizea AM, et al. Understanding and managing oral bioavailability: physiological concepts and patents. Recent Pat Anticancer Drug Discov 2015, 10: 87-96.
doi: 10.2174/1574892809666140917103834 pmid: 25230073
[23]   Deng X, Xing X, Sun G, et al. Guanxin Danshen formulation protects against myocardial ischemia reperfusion injury-Induced left ventricular remodeling by upregulating estrogen receptor β. Front Pharmacol 2017, 8: 777.
doi: 10.3389/fphar.2017.00777 pmid: 5671976
[24]   Zheng C, Wang J, Liu J, et al. System-level multi-target drug discovery from natural products with applications to cardiovascular diseases. Mol Divers 2014, 18: 621-635.
doi: 10.1007/s11030-014-9521-y pmid: 24792224
[25]   Li J, Zhao P, Li Y, et al. Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease. Sci Rep 2015, 5: 15290.
doi: 10.1038/srep15290 pmid: 4606809
[26]   Walters WP, Murcko MA.Prediction of 'drug-likeness'. Adv Drug Deliv Rev 2002, 54: 255-271.
doi: 10.1016/S0169-409X(02)00003-0
[27]   Tian S, Wang J, Li Y, et al. The application of in silica drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 2015, 86: 2-10.
doi: 10.1016/j.addr.2015.01.009 pmid: 25666163
[28]   Yamanishi Y, Kotera M, Kanehisa M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010, 26: i246-254.
doi: 10.1093/bioinformatics/btq176 pmid: 2881361
[29]   Mauri A, Consonni V, Pavan M, et al. DRAGON software: An easy approach to molecular descriptor calculations. Match Commun Math Comput Chem 2006, 56: 237-248.
[30]   Artursson P, Karlsson J.Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 1991, 175: 880-885.
doi: 10.1016/0006-291X(91)91647-U pmid: 1673839
[31]   M GL, C YY.Predicting Caco-2 permeability using support vector machine and chemistry development kit. J Pharm Pharm Sci 2006, 9: 210-221.
pmid: 16959190
[32]   Li LY, Li Y, Wang YH, et al. Prediction of human intestinal absorption based on molecular indices. J Mol Sci 2007, 23: 286-291.
doi: 10.1007/s11767-005-0212-9
[33]   Yu H, Chen J, Xu X, et al. A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 2012, 7: e37608.
doi: 10.1371/journal.pone.0037608 pmid: 3364341
[34]   Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014. 42(Web Server issue): W32-38.
doi: 10.1093/nar/gku293 pmid: 4086140
[35]   Rebhan M, Chalifa-Caspi V, Prilusky J, et al. GeneCards: integrating information about genes, proteins and diseases. Trends Genet 1997, 13: 163.
doi: 10.1016/S0168-9525(97)01103-7 pmid: 9097728
[36]   Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010, 2010: baq020.
[37]   Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25: 25-29.
doi: 10.1038/75556
[38]   Kanehisa M, Goto S.KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27
[39]   Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 2013, 14: 128.
doi: 10.1186/1471-2105-14-128
[40]   Su G, Morris JH, Demchak B, et al. Biological network exploration with Cytoscape 3. Curr Protoc Bioinform 2014, 47: 1-24.
doi: 10.1002/0471250953.bi0813s47 pmid: 25199793
[41]   Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[42]   Ji GQ, Chen RQ, Wang L.Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharmacol Immunotoxicol 2016, 38: 98-102.
doi: 10.3109/08923973.2015.1122617
[43]   Fishilevich S, Zimmerman S, Kohn A, et al. Genic insights from integrated human proteomics in GeneCards. Database. Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016, 2016. pii: baw030.
[44]   Giroux V, Rustgi AK.Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer 2017, 17: 594-604.
doi: 10.1038/nrc.2017.68 pmid: 28860646
[45]   Menheniott TR, O'Connor L, Chionh YT, et al. Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression. J Clin Invest 2016, 126: 1383-1400.
doi: 10.1172/JCI82655
[46]   Sharma SA, Tummuru MK, Blaser MJ, et al. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol 1998, 160: 2401-2407.
[47]   Cianciulli A, Calvello R, Porro C, et al. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol 2016, 36: 282-290.
doi: 10.1016/j.intimp.2016.05.007 pmid: 27208432
[48]   Li Z, He Q, Zhai X, et al. Foxo1-mediated inflammatory response after cerebral hemorrhage in rats. Neurosci Lett 2016, 629: 131-136.
doi: 10.1016/j.neulet.2016.06.013 pmid: 27288017
[49]   He YQ, Yang H, Shen Y, et al. Monotropein attenuates ovariectomy and LPS-induced bone loss in mice and decreases inflammatory impairment on osteoblast through blocking activation of NF-κB pathway. Chem Biol Interact 2018, 291: 128-136.
doi: 10.1016/j.cbi.2018.06.015
[50]   Que FG, Gores GJ.Cell death by apoptosis: basic concepts and disease relevance for the gastroenterologist. Gastroenterol 1996, 110: 1238-1243.
doi: 10.1053/gast.1996.v110.pm8613014 pmid: 8613014
[51]   Ishida M, Gomyo Y, Tatebe S, et al. Apoptosis in human gastric mucosa, chronic gastritis, dysplasia and carcinoma: analysis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling. Virchows Arch 1996, 428: 229-235.
doi: 10.1007/BF00196695 pmid: 8764931
[52]   Pujals A, Favre L, Pioche-Durieu C, et al. Constitutive autophagy contributes to resistance to TP53-mediated apoptosis in Epstein-Barr virus-positive latency III B-cell lymphoproliferations. Autophagy 2015, 11: 2275-2287.
doi: 10.1080/15548627.2015.1115939 pmid: 26565591
[53]   Fan YZ, Zhao ZM, Fu JY, et al. Norcantharidin inhibits growth of human gallbladder carcinoma xenografted tumors in nude mice by inducing apoptosis and blocking the cell cycle in vivo. Hepatobiliary Pancreat Dis Int 2010, 9: 414-422.
[54]   Díaz P, Valenzuela VM, Bravo J, et al. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol 2018, 9: 5.
doi: 10.3389/fmicb.2018.00005 pmid: 5786524
[55]   Cappellini A, Tabellini G, Zweyer M, et al. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003, 17: 2157-2167.
doi: 10.1038/sj.leu.2403111 pmid: 12931221
[56]   Huang WW, Tsai SC, Peng SF, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol 2013, 42: 2069-2077.
doi: 10.3892/ijo.2013.1909 pmid: 23591552
[57]   Hamashima C.Current issues and future perspectives of gastric cancer screening. World J Gastroenterol 2014, 20: 13767-13774.
doi: 10.3748/wjg.v20.i38.13767 pmid: 4194560
[58]   Choi YJ, Kim N.Gastric cancer and family history. Korean J Intern Med 2016, 31: 1042-53.
doi: 10.3904/kjim.2016.147 pmid: 27809451
[59]   Joo MK, Park JJ, Chun HJ.Recent updates of precision therapy for gastric cancer: Towards optimal tailored management. World J Gastroenterol 2016, 22: 4638-4650.
doi: 10.3748/wjg.v22.i19.4638 pmid: 27217696
[60]   Pasechnikov V, Chukov S, Fedorov E, et al. Gastric cancer: prevention, screening and early diagnosis. World J Gastroenterol 2014, 20: 13842-13862.
doi: 10.3748/wjg.v20.i38.13842 pmid: 25320521
[61]   Chen J, Zhao AG, Cao ND, et al. Advances in Research of Spleen Deficiency in Gastric Precancerous Conditions, Precancerous Lesions of Gastric cancer and Gastric cancer. Chin Arch Trad Chin Med 2013, 31: 1654-1657.
[62]   Khan F, Niaz K, Maqbool F, et al. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients 2016, 8: E529.
doi: 10.3390/nu8090529 pmid: 5037516
[63]   Tuorkey MJ.Molecular targets of luteolin in cancer. Eur J Cancer Prev 2016, 25: 65-76.
doi: 10.1097/CEJ.0000000000000128
[64]   Kangsamaksin T, Chaithongyot S, Wootthichairangsan C, et al. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α. PLoS One 2017, 12: e0189628.
doi: 10.1371/journal.pone.0189628 pmid: 29232409
[65]   Qin Y, Cui W, Yang X, et al. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2016: 48: 238-245.
doi: 10.1093/abbs/gmv133 pmid: 4885126
[66]   Huang JM, Zhang GN, Shi Y, et al. Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway. Sci Rep 2014, 4: 3840.
doi: 10.1038/srep03840 pmid: 24452475
[67]   Wang P, Zhang K, Zhang Q, et al. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol In Vitro 2012, 26: 221-228.
doi: 10.1016/j.tiv.2011.11.015
[68]   Zhang S, Huang J, Xie X, et al. Quercetin from Polygonum capitatum Protects against Gastric Inflammation and Apoptosis Associated with Helicobacter pylori Infection by Affecting the Levels of p38MAPK, BCL-2 and BAX. Molecules 2017, 22: pii: E744.
doi: 10.3390/molecules22050744 pmid: 28481232
[69]   Ekstr?m AM, Serafini M, Nyrén O, et al. Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Ann Oncol 2011, 22: 438-443.
doi: 10.1093/annonc/mdq390 pmid: 20688844
[70]   Wang F, Gao F, Pan S, et al. Luteolin induces apoptosis, G0/G1 cell cycle growth arrest and mitochondrial membrane potential loss in neuroblastoma brain tumor cells. Drug Res (Stuttg) 2015, 65: 91-95.
doi: 10.1055/s-0034-1372648 pmid: 24831243
[71]   Ju W, Wang X, Shi H, et al. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 2007, 71: 1381-1388.
doi: 10.1124/mol.106.032185
[72]   Lu J, Li G, He K, et al. Luteolin exerts a marked antitumor effect in cMet-overexpressing patient-derived tumor xenograft models of gastric cancer. J Transl Med 2015, 13: 42.
doi: 10.1186/s12967-015-0398-z pmid: 25638174
[73]   Chen AY, Chen YC.A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013, 138: 2099-2107.
doi: 10.1016/j.foodchem.2012.11.139
[74]   Garcia-Closas R, Gonzalez CA, Agudo A, et al. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control 1999, 10: 71-75.
doi: 10.1023/A:1008867108960
[75]   Liao W, Chen L, Ma X, et al. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur J Med Chem 2016, 114: 24-32.
doi: 10.1016/j.ejmech.2016.02.045 pmid: 26974372
[76]   Basudhar D, Glynn SA, Greer M, et al. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc Natl Acad Sci USA 2017, 114: 13030-13035.
doi: 10.1073/pnas.1709119114
[77]   Chung SS, Wu Y, Okobi Q, et al. Proinflammatory cytokines IL-6 and TNF-α increased telomerase activity through NF-κB/STAT1/STAT3 activation, and withaferin A inhibited the signaling in colorectal cancer cells. Mediators Inflamm 2017, 2017: 5958429.
[78]   Badary DM, MZAA R, Ashmawy AM, et al. H. pylori infection increases gastric mucosal COX2 and mTOR expression in chronic gastritis: Implications for cancer progression. Pathophysiol 2017, 24: 205-211.
doi: 10.1016/j.pathophys.2017.05.004 pmid: 28668512
[79]   Zhang Y, Pan KF, Zhang L, et al. Helicobacter pylori, cyclooxygenase-2 and evolution of gastric lesions: results from an intervention trial in China. Carcinogenesis 2015, 36: 1572-1579.
doi: 10.1093/carcin/bgv147 pmid: 26449252
[80]   Gürsel DB, Banu MA, Berry N, et al. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling. J Neurooncol 2015, 121: 19-29.
doi: 10.1007/s11060-014-1602-3 pmid: 25344882
[81]   Ling H, Samarasinghe S, Kulasiri D.Computational experiments reveal the efficacy of targeting CDK2 and CKIs for significantly lowering cellular senescence bar for potential cancer treatment. Biosystems 2013, 111: 71-82.
doi: 10.1016/j.biosystems.2012.12.001 pmid: 23254306
[82]   Rubenstein M, Hollowell CM, Guinan P.Suppression of BCL2 by antisense oligonucleotides and compensation by non-targeted genes may enhance tumor proliferation. In Vivo 2015, 29: 687-693.
pmid: 26546525
[83]   Liu Z, Ding Y, Ye N, et al. Direct activation of bax protein for cancer therapy. Med Res Rev 2016, 36: 313-341.
doi: 10.1002/med.21379 pmid: 26395559
[84]   Liu Y, Tang ZG, Lin Y, et al. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed Pharmacother 2017, 92: 33-38.
doi: 10.1016/j.biopha.2017.05.044 pmid: 28528183
[85]   Leung WK, Yu J, To KF, et al. Apoptosis and proliferation in Helicobacter pylori-associated gastric intestinal metaplasia. Aliment Pharmacolther 2001, 15: 1467-1472.
doi: 10.1046/j.1365-2036.2001.01057.x pmid: 11552920
[86]   Hong MH, Kim JH, Bae H, et al. Atractylodes japonica Koidzumi inhibits the production of proinflammatory cytokines through inhibition of the NF-kappaB/IkappaB signal pathway in HMC-1 human mast cells. Arch Pharm Res 2010, 33: 843-851.
doi: 10.1007/s12272-010-0606-6
[87]   Li CQ, He LC, Jin JQ.Atractylenolide I and atractylenolide III inhibit Lipopolysaccharide- induced TNF-alpha and NO production in macrophages. Phytother Res 2007, 21: 347-353.
doi: 10.1002/(ISSN)1099-1573
[88]   Mo XJ, Wei CH, Cheng GZ.Efficacy of Chinese herbal medicine in chronic atrophic gastritis: a systematic review. Liaoning J Trad Chin Med 2013, 40: 840-846.
[89]   Liu NN, Deng WL, Wu CJ, et al. Effect of Jianpi Jiedu Recipe on angiogenesis and the PTEN/PI3K/AKT signaling. Trad Med Res 2018, 3: 29-39.
[1] Su-Tong Liu, Su-Fang Zhang, Kai-Qi Su, Ying-Bin Luo, Zhi-Hong Fang, Yuan Fang, Jing Xu, Jian-Chun Wu, Yan Li. The effect of long-term traditional Chinese medicine treatment on disease-free survival of postoperative stage I-III lung cancer patients: a retrospective cohort study[J]. Traditional Medicine Research, 2019, 4(2): 91-98.
[2] Wei-Jie Xie, Yu-Mei Wu, Shuai-Shuai Chen, Jian Xu, Fang-Fang Yang, Yong-Ping Zhang, Xiao-Bo Sun. In vitro evaluation of transdermal permeation effects of Fu’s cupping therapy via six diffusion kinetics models[J]. Traditional Medicine Research, 2019, 4(1): 42-53.
[3] Jian Hao, Shi-Jun Li. Recent advances in network pharmacology applications in Chinese herbal medicine[J]. Traditional Medicine Research, 2018, 3(6): 260-272.
[4] Shang-Jin Song, Ren-Jie Xu, Li-Juan Xiu, Xuan Liu, Xiao-Qiang Yue. Network pharmacology-based approach to investigate the mechanisms of Yiyi Fuzi Baijiang Powder in the treatment of malignant tumors[J]. Traditional Medicine Research, 2018, 3(6): 295-306.
[5] Yang Hu, Dan Chen. Analysis of the action mechanism of Fang Ji Huang Qi decoction in treating rheumatoid arthritis by network pharmacology[J]. Traditional Medicine Research, 2018, 3(6): 286-294.
[6] Yue Ji, Jun-Chen Li, Jing-Yan Meng, Xue-Rou Yan, Jian-ang Li, Qing-Yun Zhao, Kang Yang, Chun- Liu. Study of dual-directional regulatory effect of Banxia (Pinellia ternata) and Huanglian (Coptis chinensis) drug pair on gastrointestinal movement of mice[J]. Traditional Medicine Research, 2018, 3(3): 148-156.
[7] Wen-Qi Huang, Zhu Yang, Dong-Xin Tang, Feng-Xi Long, Li Luo, Bing Yang, Juan Li, Jie Chen. Pharmacological intervention of traditional Chinese medicine for the quality of life in patients with colorectal cancer: a systematic review and meta-analysis[J]. Traditional Medicine Research, 2018, 3(2): 95-105.
[8] Li-Lin Yang, Jie Gao, Hai-Wang Wu, Song-Ping Luo. History of recurrent miscarriage in traditional Chinese medicine literature[J]. Traditional Medicine Research, 2018, 3(2): 62-69.
[9] Tian Ran, Dai Liang, Shang Hong-Cai, Li You-Ping, Bian Zhao-Xiang. How to establish precise proprietary Chinese medicine in post-marketing reappraisal?[J]. Traditional Medicine Research, 2017, 2(4): 155-160.
[10] Zhai Jing-Bo, Li Jiang, Chen Jing. The applications of Bayesian models in real-world studies of traditional Chinese medicine: a primer[J]. Traditional Medicine Research, 2017, 2(2): 88-93.
[11] Yang Xue, Wu Xiong-Zhi. The combination of disease and Zheng (syndrome) on the basic of differentiation of six channels: a new pattern of disease diagnosis and treatment of traditional Chinese medicine[J]. Traditional Medicine Research, 2017, 2(2): 100-104.
[12] Xu Wei, Chai Ni, Cheng Yue-Lei, Yang Qiong, Zhu Hui-Rong. Analysis on the principles of differentiation and prescription of traditional Chinese medicine in the treatment of cancerous fever[J]. Traditional Medicine Research, 2017, 2(1): 41-50.
[13] Shang Hong-Cai, Wu Xiong-Zhi, Qiu Rui-Jin, Wang Ya-Han, Wang Yong-Yan. Traditional Chinese medicine should not be ignored during the development of precision medicine with Chinese characteristics[J]. Traditional Medicine Research, 2016, 1(3): 105-114.
[14] Liu Li-Juan, Zhou Chao, Song Fu-Cheng, Zhang Sen-Sen, Teng Wen-Jing, Zhuang Jing, Sun Chang-Gang, Si Hong-Zong. Molecular docking study on the molecular mechanism of rhaponticin for treatment of chronic myelocytic leukemia[J]. Traditional Medicine Research, 2016, 1(3): 122-127.
[15] Yang Dao-Zheng, Luan Xin-Yuan, Wang Shu-Bin. Epigenetic regulations of hematopoietic stem cells ageing and the regulation of traditional Chinese medicine[J]. Traditional Medicine Research, 2016, 1(2): 75-82.