Please wait a minute...
1Traditional Medicine Research  2020, Vol. 5 Issue (3): 145-159    DOI: 10.12032/TMR20200324170
Special Issue on Infectious Diseases and Public Health     
Network pharmacology studies on the effect of Chai-Ling decoction in coronavirus disease 2019
Lu Yang1#, Yu-Ting Li2#, Jing Miao3, Li Wang4, Hui Fu5, Qin Li6, Wei-Bo Wen6, Zhai-Yi Zhang5, Rui-Wen Song7, Xiang-Guo Liu8, Hong-Wu Wang2,*(), Huan-Tian Cui8,*()
1Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
2College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
3Department of Integrated Traditional and Western Medicine, Tianjin Second People’s Hospital, Tianjin 300192, China;
4Department of Pharmacy, Tianjin Second People’s Hospital, Tianjin 300192, China;
5College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
6Department of Endocrinology in Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming 650021, China
7School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
8Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 250100, China.
Download: HTML     PDF(1141KB)
Export: BibTeX | EndNote (RIS)      

Highlights

The current study applied network pharmacology analysis and molecular docking method to study the potential mechanisms of Chai-Ling decoction (CLD), an empirical formula derived from the classic ancient prescription Xiao-Chai-Hu (XCH) decoction and Wu-Ling-San (WLS), on coronavirus disease 2019 (COVID-19).

Traditionality

The classic ancient prescription XCH and WLS decoctions originated from the ancient book of Chinese medicine Shang Han Za Bing Lun (Treatise on Cold Damage Disorders, 200-210 C.E.), written by Zhang Zhongjing. Previous studies have demonstrated that XCH can alleviate fever, cough, and fatigue, which were the primary clinical outcomes of COVID-19. Besides, WLS decoction has shown apparent effects on attenuating gastrointestinal symptoms. CLD, derived from a modification of XCH and WLS decoctions, is used to treat the early-stage of COVID-19 in the Prevention and Treatment Guidelines of Damp-Heat Syndrome of “Taiyin” Lung (respiratory system in the theory of traditional Chinese medicine) Epidemic Disease (coronavirus pneumonia). However, the mechanisms of action of CLD in COVID-19 remain unclear.

Abstract

Background: Chai-Ling decoction (CLD), derived from a modification of Xiao-Chai-Hu (XCH) decoction and Wu-Ling-San (WLS) decoction, has been used to treat the early-stage of coronavirus disease 2019 (COVID-19). However, the mechanisms of CLD in COVID-19 remain unknown. In this study, the potential mechanisms of CLD in COVID-19 were preliminarily investigated based on network pharmacology and molecular docking method. Methods: Initially, the active components and targets of CLD were screened based on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and PharmMapper database. The targets of COVID-19 were obtained from GeneCards database. The protein-protein interaction network was established using STRING database to analyze the key targets. Gene Oncology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes analysis were also conducted to evaluate the pathways related to the targets of CLD on COVID-19. Moreover, the compound-target-pathway network was established using Cytoscape 3.2.7. Subsequently, the molecular docking method was performed to select the active compounds with high binding affinity on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2), which is the key target of SARS-CoV-2 in entering target cells. The possible binding sites were also visualized by a three-dimensional graph. Results: Network pharmacology analysis showed that there were 106 active components and 160 targets of CLD. Additionally, 251 targets related to COVID-19 were identified, and 24 candidates of CLD on COVID-19 were selected. A total of 283 GO terms of CLD on COVID-19 were identified, and 181 pathways were screened based on GO and Kyoto Encyclopedia of Genes and Genomes analyses. CLD might alleviate the inflammatory response and improve lung injury to treat COVID-19 through interleukin 17 signaling, T helper cell 17 differentiation, tumor necrosis factor signaling, and hypoxia inducible factor-1 signaling. Besides, molecular docking indicated that beta-sitosterol, kaempferol, and stigmasterol were the top three candidates in CLD with the highest affinity to SARS-CoV-2 and ACE2. Conclusion: Our study identifies the potential mechanisms of CLD on COVID-19 and beta-sitosterol, kaempferol, and stigmasterol may be the key compounds that exert antiviral effects against SARS-CoV-2.



Key wordsChai-Ling decoction      Coronavirus disease 2019      Network pharmacology      Molecular docking      Severe acute respiratory syndrome coronavirus 2      Angiotensin-converting enzyme 2     
Published: 13 April 2020
Fund:  This study was supported by university-level project on curing disease in 2018 of Tianjin University of Traditional Chinese Medicine (XJ201801).
Corresponding Authors: Hong-Wu Wang, Huan-Tian Cui   
E-mail: whw2009@tjutcm.edu.cn;1762316411@qq.com.
About author: #These authors are co-first authors on this work.
Cite this article:

Lu Yang, Yu-Ting Li, Jing Miao, Li Wang, Hui Fu, Qin Li, Wei-Bo Wen, Zhai-Yi Zhang, Rui-Wen Song, Xiang-Guo Liu, Hong-Wu Wang, Huan-Tian Cui. Network pharmacology studies on the effect of Chai-Ling decoction in coronavirus disease 2019. 1Traditional Medicine Research, 2020, 5(3): 145-159. doi: 10.12032/TMR20200324170

URL:

https://www.tmrjournals.com/tmr/EN/10.12032/TMR20200324170

MOL_ID Molecule_name OB (%) DL Herb Node
MOL000006 Luteolin 36.16 0.25 FF M1
MOL000098 Quercetin 46.43 0.28 FF, BR, GRER M2
MOL000173 Wogonin 30.68 0.23 FF, SR M3
MOL000358 Beta-sitosterol 36.91 0.75 FF, CR, SR M4
MOL000422 Kaempferol 41.88 0.24 FF, BR, GRER M5
MOL003295 (+)-Pinoresinol monomethyl ether 53.08 0.57 FF M6
MOL003305 Phillyrin 36.4 0.86 FF M7
MOL003306 ACon1_001697 85.12 0.57 FF M8
MOL003322 Forsythinol 81.25 0.57 FF M9
MOL003330 (-)-Phillygenin 95.04 0.57 FF M10
MOL003347 Hyperforin 44.03 0.6 FF M11
MOL003348 Adhyperforin 44.03 0.61 FF M12
MOL000359 Sitosterol 36.91 0.75 SD, AR, CR, SR, GRER M13
MOL000830 Alisol B 34.47 0.82 AR M14
MOL000831 Alisol B monoacetate 35.58 0.81 AR M15
MOL000832 Alisol B 23-acetate 32.52 0.82 AR M16
MOL000853 Alisol B 36.76 0.82 AR M17
MOL000854 Alisol C 32.7 0.82 AR M18
MOL000856 Alisol C monoacetate 33.06 0.83 AR M19
MOL000816 Ergosta-7,22-dien-3-one 44.88 0.72 PO M20
MOL000817 Ergosta-5,7,22-trien-3-ol 46.18 0.72 PO M21
MOL000820 Polyporusterone E 45.71 0.85 PO M22
MOL000822 Polyporusterone G 33.43 0.81 PO M23
MOL011169 Peroxyergosterol 44.39 0.82 PO M24
MOL000276 7,9(11)-Dehydropachymic acid 35.11 0.81 P M25
MOL000283 Ergosterol peroxide 40.36 0.81 P M26
MOL000287 3Beta-hydroxy-24-methylene-8-lanostene-21-oic acid 38.7 0.81 P M27
MOL000289 Pachymic acid 33.63 0.81 P M28
MOL000290 Poricoic acid A 30.61 0.76 P M29
MOL000291 Poricoic acid B 30.52 0.75 P M30
MOL000292 Poricoic acid C 38.15 0.75 P M31
MOL000296 Hederagenin 36.91 0.75 P M32
MOL000300 Dehydroeburicoic acid 44.17 0.83 P M33
MOL000021 14-Acetyl-12-senecioyl-2E,8E,10E-atractylentriol 60.31 0.31 AMR M34
MOL000022 14-Acetyl-12-senecioyl-2E,8Z,10E-atractylentriol 63.37 0.3 AMR M35
MOL000049 3β-Acetoxyatractylone 54.07 0.22 AMR M36
MOL000072 8β-Ethoxy atractylenolide Ⅲ 35.95 0.21 AMR M37
MOL000073 ent-Epicatechin 48.96 0.24 CR M38
MOL000492 (+)-Catechin 54.83 0.24 CR M39
MOL001736 (-)-Taxifolin 60.51 0.27 CR M40
MOL_ID Molecule_name OB (%) DL Herb Node
MOL000228 (2R)-7-Hydroxy-5-methoxy-2-
phenylchroman-4-one
55.23 0.2 SR M41
MOL000525 Norwogonin 39.4 0.21 SR M42
MOL000552 5,2'-Dihydroxy-6,7,8-trimethoxyflavone 31.71 0.35 SR M43
MOL001689 Acacetin 34.97 0.24 SR M44
MOL002714 Baicalein 33.52 0.21 SR M45
MOL002908 5,8,2'-Trihydroxy-7-methoxyflavone 37.01 0.27 SR M46
MOL002909 5,7,2,5-Tetrahydroxy-8,6-
dimethoxyflavone
33.82 0.45 SR M47
MOL002917 5,2',6'-Trihydroxy-7,8-dimethoxyflavone 45.05 0.33 SR M48
MOL002925 5,7,2',6'-Tetrahydroxyflavone 37.01 0.24 SR M49
MOL002927 Skullcapflavone II 69.51 0.44 SR M50
MOL002928 Oroxylin a 41.37 0.23 SR M51
MOL002932 Panicolin 76.26 0.29 SR M52
MOL002933 5,7,4'-Trihydroxy-8-methoxyflavone 36.56 0.27 SR M53
MOL002934 Neobaicalein 104.3 0.44 SR M54
MOL000354 Isorhamnetin 49.6 0.31 BR, GRER M55
MOL000449 Stigmasterol 43.83 0.76 BR M56
MOL002776 Baicalin 40.12 0.75 BR M57
MOL004598 3,5,6,7-Tetramethoxy-2-(3,4,5-
trimethoxyphenyl)chromone
31.97 0.59 BR M58
MOL004609 Areapillin 48.96 0.41 BR M59
MOL004648 Troxerutin 31.6 0.28 BR M60
MOL000239 Jaranol 50.83 0.29 GRER M61
MOL000392 Formononetin 69.67 0.21 GRER M62
MOL000417 Calycosin 47.75 0.24 GRER M63
MOL000497 Licochalcone a 40.79 0.29 GRER M64
MOL000500 Vestitol 74.66 0.21 GRER M65
MOL001484 Inermine 75.18 0.54 GRER M66
MOL001792 DFV 32.76 0.18 GRER M67
MOL002311 Glycyrol 90.78 0.67 GRER M68
MOL002565 Medicarpin 49.22 0.34 GRER M69
MOL003896 7-Methoxy-2-methyl isoflavone 42.56 0.2 GRER M70
MOL004328 Naringenin 59.29 0.21 GRER M71
MOL004808 Glyasperin B 65.22 0.44 GRER M72
MOL004810 Glyasperin F 75.84 0.54 GRER M73
MOL004811 Glyasperin C 45.56 0.4 GRER M74
MOL004815 (E)-1-(2, 4-Dihydroxyphenyl)-3-(2, 2-dimethylchromen-6-yl)prop-2-en-1-one 39.62 0.35 GRER M75
MOL004827 Semilicoisoflavone B 48.78 0.55 GRER M76
MOL004828 Glepidotin A 44.72 0.35 GRER M77
MOL004829 Glepidotin B 64.46 0.34 GRER M78
MOL004833 Phaseolinisoflavan 32.01 0.45 GRER M79
MOL004841 Licochalcone B 76.76 0.19 GRER M80
MOL_ID Molecule_name OB (%) DL Herb Node
MOL004848 Licochalcone G 49.25 0.32 GRER M81
MOL004855 Licoricone 63.58 0.47 GRER M82
MOL004856 Gancaonin A 51.08 0.4 GRER M83
MOL004879 Glycyrin 52.61 0.47 GRER M84
MOL004883 Licoisoflavone 41.61 0.42 GRER M85
MOL004884 Licoisoflavone B 38.93 0.55 GRER M86
MOL004885 Licoisoflavanone 52.47 0.54 GRER M87
MOL004903 Liquiritin 65.69 0.74 GRER M88
MOL004908 Glabridin 53.25 0.47 GRER M89
MOL004910 Glabranin 52.9 0.31 GRER M90
MOL004911 Glabrene 46.27 0.44 GRER M91
MOL004912 Glabrone 52.51 0.5 GRER M92
MOL004915 Eurycarpin A 43.28 0.37 GRER M93
MOL004917 Glycyroside 37.25 0.79 GRER M94
MOL004924 (-)-Medicocarpin 40.99 0.95 GRER M95
MOL004949 Isolicoflavonol 45.17 0.42 GRER M96
MOL004957 HMO 38.37 0.21 GRER M97
MOL004959 1-Methoxyphaseollidin 69.98 0.64 GRER M98
MOL004961 Quercetin der. 46.45 0.33 GRER M99
MOL005000 Gancaonin G 60.44 0.39 GRER M100
MOL005001 Gancaonin H 50.1 0.78 GRER M101
MOL005007 Glyasperins M 72.67 0.59 GRER M102
MOL005008 Glycyrrhiza flavonol A 41.28 0.6 GRER M103
MOL005012 Licoagroisoflavone 57.28 0.49 GRER M104
MOL005013 18α-Hydroxyglycyrrhetic acid 41.16 0.71 GRER M105
MOL005020 Dehydroglyasperins C 53.82 0.37 GRER M106
Table 1 Information of active compounds in CLD
Figure 1 Common targets of CLD in COVID-19. CLD, Chai-Ling decoction; COVID-19, coronavirus disease 2019.
Figure 2 PPI network of target proteins. PPI, protein-protein interaction.
Figure 3 GO enrichment analysis of the common targets. GO, Gene oncology.
No. Pathways Numbers of genes - log (p)
1 Human cytomegalovirus infection 12 22.22
2 IL-17 signaling pathway 10 21.29
3 Tuberculosis 10 18.58
4 Endocrine resistance 9 18.54
5 C-type lectin receptor signaling pathway 9 18.32
6 HIF-1 signaling pathway 9 18.14
7 TNF signaling pathway 9 18.04
8 NOD-like receptor signaling pathway 9 16.30
9 T cell receptor signaling pathway 8 15.90
10 Th17 cell differentiation 8 15.78
Table 2 KEGG enrichment analysis of the common targets
Figure 4 Compound-target-pathway network of CLD in COVID-19. Red nodes represent the genes, orange nodes represent pathways, light green nodes represent the active ingredients of Chaihu (Bupleuri Radix), purple nodes represent active ingredient of Huangqin (Scutellariae radix), light yellow nodes represent active ingredients of Lianqiao (Forsythiae Fructus), light blue nodes represent active ingredients of Gancao (Glycyrrhizae Radix et Rhizoma), and pink nodes represent the active ingredients of Guizhi (Cinnamomi Ramulus), Baizhu (Atractylodis Macrocephalae Rhizoma), Fuling (Poria), Zhuling (Polyporus), Zexie (Alismatis Rhizoma), Shishangbai (Selaginella Doederleinii).
CLD, Chai-Ling decoction; COVID-19, coronavirus disease 2019.
Compound Molecular formula Binding energy values (SARS-CoV-2) Binding energy values (ACE2)
Luteolin C15H10O6 - 7.4 - 8.8
Quercetin C15H10O7 - 7.5 - 9.0
Wogonin C16H12O5 - 6.7 - 8.8
Mairin C30H48O3 - 7.4 - 9.6
Beta-sitosterol C30H52O - 8.1 - 10.9
Kaempferol C15H10O6 - 7.8 - 10.4
Arctiin C27H34O11 - 7.3 - 9.9
Bicuculline C20H17NO6 - 7.5 - 8.6
(3R,4R)-3,4-bis[(3,4-dimethoxyphenyl)methyl]oxolan-2-one C13H22O - 6.5 - 8.7
(+)-Pinoresinol monomethyl ether C27H34O11 - 6.9 - 8.9
Phyllyrin C27H34O11 - 7.1 - 9.4
Forsythinol C21H24O6 - 4.8 - 5.6
(-)-Phillygenin C21H24O6 - 6.9 - 9.0
β-Amyrin acetate C32H52O2 - 7.7 - 6.5
Hyperforin C35H52O4 - 5.9 - 9.1
Onjixanthone I C16H14O6 - 6.5 - 7.9
Stigmasterol C29H48O - 7.7 - 9.8
Yangambin C24H30O8 - 6.3 - 8.2
Alisol b C28H44O4 - 7.6 - 9.7
Alisol, b, 23-acetate C31H47O6 - 6.9 - 9.7
Arbidol C22H26BrClN2O3S - 6.5 - 8.2
Atazanavir C38H52N6O7 - 7.7 - 12.4
Darunavir C27H37N3O7S - 7.6 - 9.6
Indinavir C36H47N5O4 - 8.2 - 10.9
Kyprolis C40H57N5O7 - 7.3 - 10.2
Lopinavir C37H48N4O5 - 9.1 - 10.8
Remdesivir C27H35N6O8P - 7.5 - 11.0
Ritonavir C37H48N6O5S2 - 8.0 - 9.9
Saquinavir C38H50N6O5 - 8.9 - 11.7
Tipranavir C31H33F3N2O5S - 7.7 - 11.7
Table 4 Molecular docking table of ACE2 and SARS-CoV-2 with 20 active components in CLD and 10 Western medicine compounds
Figure 5 Molecular docking diagram of ACE2 with β-sitosterol, kaempferol, and stigmasterol. ACE2, angiotensin-converting enzyme 2.
Figure 6 Molecular docking diagram of SARS-CoV-2 with β-sitosterol, kaempferol, and stigmasterol. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
1.   Cui HT, Li YT, Guo LY, et al. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review. Tradit Med Res 2020, 5: 65-73.
2.   Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579: 270-273.
3.   Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426: 450-454.
4.   Alenina N,Bader M. ACE2 in brain physiology and pathophysiology: evidence from transgenic animal models. Neurochem Res 2019, 44: 1323-1329.
5.   Gao SM, Ma Y, Yang FW, et al. Zhang Boli: traditional Chinese medicine plays a role in the prevention and treatment on novel coronavirus pneumonia. Tianjin J Tradit Chin Med 2020, 37: 121-124. (Chinese)
6.   National Administration of Traditional Chinese Medicine [Internet]. Research progress in identification of effective formula in traditional Chinese medicine [cited 2020 February 7]. Available from: http://bgs.satcm.gov.cn/gongzuodongtai/2020-02-06/12866.html
7.   Xiao H. Clinical study on the treatment of fever caused by upper respiratory infection with Xiao-Chai-Hu decoction. World Latest Med Infor Digest 2019, 19: 178-179. (Chinese)
8.   Duan CM, Zhu J, Xiao QY. Treatment of exogenous cough with Xiao-Chai-Hu decoction. Shanxi Tradit Chin Med 2008, 34: 21. (Chinese)
9.   Liu HY. Clinical study on the treatment of chronic hepatitis B with Xiao-Chai-Hu decoction. Guangming Chin Med 2008, 33: 2844-2845. (Chinese)
10.   Xiong JB. On TCM diagnosis and treatment program of coronavirus disease 2019 in Hunan province by national TCM master Xiong Jibo. J Hunan Univ Tradit Chin Med 2020, 40: 123-128. (Chinese)
11.   Yu YX, Tang W, Wang JT. Discussion on the new approach of Wu-Ling-San to present syndrome. Tradit Chin Med J 2019, 18: 22-24. (Chinese)
12.   Guo XC, Li FF, Zhu XD, et al. Research progress on pharmacological funtion and clinical application of Chai-Ling decoction. Chinese Tradit Pat Med 2015, 37: 1075-1079. (Chinese)
13.   Wu XZ. Prevention and treatment guidelines of damp-heat syndrome of Taiyin lung epidemic disease (coronavirus pneumonia). Classic Chin Med, online.(Chinese)
14.   Liu ZH, Sun XB. Network pharmacology: new opportunity for the modernization of traditional Chinese medicine. Acta Pharmaceutica Sinica 2012, 47: 696-703. (Chinese)
15.   Diller DJ, Merz KM. High throughput docking for library design and library prioritization. Proteins 2001, 43: 113-124.
16.   Xu X, Zhang WX, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012, 13: 6964-6982.
17.   Tao WY, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 2013, 145: 1-10.
18.   Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010, 38: 609-614.
19.   Hong LY, Yan YC, Xu L, et al. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 2018, 46: D1121-D1127.
20.   Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13: 2498-2504.
21.   Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Gene 2000, 25: 25-29.
22.   Martina K, Thomas K, Pooja M, et al. Cytargetlinker: a cytoscape app to integrate regulatory interactions in network analysis. PLoS One 2013, 8: e82160.
23.   Zhou MY, Huo JH, Sun GD, et al. Identification of 45 kinds of chemical components of forsythia suspensa by UPLC-Q-TOF-MS. Chin Pharm 2019, 30: 3067-3073. (Chinese)
24.   Deng Y, Liu AN, Wang XM, et al. Analysis of the triterpenes in the extract of Alismatis Rhizoma by HPLC-TOF-MS. Chem Analysis Meterage 2015, 24: 11-14. (Chinese)
25.   Wang G, Zhang MS, Li D, et al. Study on chemical constituents of Selaginella doederleinii. Liaoning J Ttadit Chin Med 2019, 46: 124-126. (Chinese)
26.   Wand TY, Zhang FF, Ren YY, et al. Research progress on chemical constituents and pharmacological actions of Polyporus Umbellatus. Shanghai J Tradit Chin Med 2017, 51: 109-112. (Chinese)
27.   Shen YP, Li J, Jia XB. Research progress on chemical constituents of Poria. J Nanjing Univ Tradit Chin Med 2012, 28: 297-300. (Chinese)
28.   Li Y, Yang XW. Chemical constituents of rhizomes of Atractylodis Macrocephalae Rhizoma. Mod Chin Med 2018, 20: 382-386. (Chinese)
29.   Yang L, Zhao QC, Tan JJ, et al. Studies on chemical constituents of Cinnamomi Ramulus. Pract Pharm Clin Remedies 2010, 13: 183-185. (Chinese)
30.   Liu DW, Yan GL, Fang Y, et al. UPLC-ESI-TOF/MS rapid analysis of chemical composition of Scutellariae Radix. Infor Tradit Chin Med 2012, 29: 20-24. (Chinese)
31.   Yan ML, Yang L, Hou AJ, et al. Research progress on chemical composition and pharmacological effect of Bupleuri Radix. Infor Tradit Chin Med 2018, 35: 103-109. (Chinese)
32.   Sun P. Studies on chemical constituents on Glycyrrhizae Radix et Rhizoma. Guide Chin Med 2010, 8: 226-227. (Chinese)
33.   Ma HJ, Gao J, Zhang YL, et al. Study on identification of compounds and their fragmentation pathways in Glycyrrhizae Radix et Rhizoma by HPLC-MSn. Chin J Tradit Chin Med Pharm 2018, 33: 1120-1123. (Chinese)
34.   Zhao Y, Liu SX, Zhang CX, et al. Analysis on chemical constituents from Glycyrrhizae Radix et Rhizama. Chin Herb Med 2016, 47: 2061-2068. (Chinese)
35.   Deng YJ, Liu BW, He ZX, et al. Study on active compounds from Huoxiang-Zhengqi Oral Liquid for prevention of novel coronavirus pneumonia (COVID-19) based on network pharmacology and molecular docking. Chin Herb Med 2020, 51: 1113-1122. (Chinese)
36.   Wang Y, Wu J, Xiang JY, et al. Exploring the active compounds of Huanglian Jiedu decoction in the treatment of coronavirus disease 2019 (COVID-19) based on network pharmacology and molecular docking method. Pharmacol Clin Chin Materia Medica 2020, online. (Chinese)
37.   Xu DY, Xu YL, Wang ZW, et al. Mechanism of Qingfeipaidu decoction on COVID-19 based on network pharmacology. Pharmacol Clin Chin Materia Medica 2020, online (Chinese)
38.   Wei ZQ, Yan L, Deng JG, et al. Effects of mangiferin on MAPK pathway and serum cytokines in rats with chronic inflammation induced by lipopolysaccharide. Chin Herb Med 2013, 44: 52-58. (Chinese)
39.   Yi MX, Cao Y, Shi CY, et al. Research progress of prevention and treatment of cytokine storm with traditional Chinese medicine. Chin Herb Med 2020, 51: 1089-1095. (Chinese)
40.   Liu RP, Ge JD, Zhong Y, et al. Traditional Chinese medicine for treatment of COVID-19 based on literature mining of targeting cytokine storm. Chin Herb Med 2020, 51: 1096-1105. (Chinese)
41.   Duo YH, Sun LN, Ying SL, et al. Effects of Xihuang pill on the growth of human colorectal cancer cell xenografts in nude mice through the ERK/MAPK pathway. Chin J Tradit Chin Med Pharm 2013, 28: 3055-3058. (Chinese)
42.   Davidson S, Maini M K, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015, 35: 252-264.
43.   Masson N, Willam C, Maxwell PH, et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001, 20: 5197-5206.
44.   Wu LX, Wu M, Lin XL, et al. Expressions of chemokine receptor CXCR3 and its ligand interferon-γ-inducible protein-10 in lung tissue of asthmatic model mice and their significances. J Appl Clin Pediatr 2009, 24: 1238-1240. (Chinese)
45.   Chen GH, Chen JH, Zhang LC. Curcumin regulates Th17/Treg balance in treatment of ulcerative colitis by IL-6/STAT3 signaling pathway. Chin J Pathophysiol 2019, 35: 2092-2097+2102. (Chinese)
[1] Cai-Ping Zhao, Hang Li, Xiao-Hong Liu, Shuang Liang, Xue-Lei Liu, Xin-Rong Li, Yi Luo, Mei-Ling Zhu. Dissecting the underlying pharmaceutical mechanism of Danggui Buxue decoction acting on idiopathic pulmonary fibrosis with network pharmacology[J]. 1Traditional Medicine Research, 2020, 5(4): 238-251.
[2] Lu Yang, Ning Li, Hai-Bo Hu, Bin Yin, Guo-Jing Zhao, Feng-Chan Wang, Xu-Hui Wang, Hong-Wu Wang, Xue-Chao Lu, Huan-Tian Cui. Can Yin-Chai-Xiao-Du decoction be useful of COVID-19? the mechanism research based on network pharmacology[J]. 1Traditional Medicine Research, 2020, 5(4): 188-200.
[3] Yu-Xuan Zhang, Ying Quan, Ming-Hu Chen, Duo Zhang, Ying Zhang, Zhen-Gang Zhu. Does Liuzijue Qigong affect anxiety in patients with chronic obstructive pulmonary disease, even during the COVID-19 outbreak? a randomized, controlled trial[J]. 1Traditional Medicine Research, 2020, 5(4): 216-228.
[4] Min Cao, Jing Miao, Li Wang, Hai-Zhao Liu, Huan-Tian Cui, Yu-Hong Bian. The advances of traditional Chinese medicine in the treatment of liver diseases in 2019[J]. 1Traditional Medicine Research, 2020, 5(4): 261-271.
[5] Yu-Liang Zhang, Qian Cui, Dou Zhang, Xin Ma, Guo-Wei Zhang. Efficacy of Xuebijing injection for the treatment of coronavirus disease 2019 via network pharmacology[J]. 1Traditional Medicine Research, 2020, 5(4): 201-215.
[6] Wei-Wei Su, Yong-Gang Wang, Pei-Bo Li, Hao Wu, Xuan Zeng, Rui Shi, Yu-Ying Zheng, Pan-Lin Li, Wei Peng. The potential application of the traditional Chinese herb Exocarpium Citri grandis in the prevention and treatment of COVID-19[J]. 1Traditional Medicine Research, 2020, 5(3): 160-166.
[7] Huan-Tian Cui, Yu-Ting Li, Li-Ying Guo, Xiang-Guo Liu, Lu-Shan Wang, Jian-Wei Jia, Jia-Bao Liao, Jing Miao, Zhai-Yi Zhang, Li Wang, Hong-Wu Wang, Wei-Bo Wen. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review[J]. 1Traditional Medicine Research, 2020, 5(2): 65-73.
[8] Yin-Zi Yue, Li Zeng, Xiao-Peng Wang, Yang Zong, Shuai Yan. Study on multi-target mechanism of Radix et Rhizoma Rhei (Dahuang) and Semen Persicae (Taoren) on adhesion intestinal obstruction based on network pharmacology[J]. 1Traditional Medicine Research, 2019, 4(4): 195-204.
[9] Shang-Jin Song, Ren-Jie Xu, Li-Juan Xiu, Xuan Liu, Xiao-Qiang Yue. Network pharmacology-based approach to investigate the mechanisms of Yiyi Fuzi Baijiang Powder in the treatment of malignant tumors[J]. 1Traditional Medicine Research, 2018, 3(6): 295-306.
[10] Yang Hu, Dan Chen. Analysis of the action mechanism of Fang Ji Huang Qi decoction in treating rheumatoid arthritis by network pharmacology[J]. 1Traditional Medicine Research, 2018, 3(6): 286-294.
[11] Jian Hao, Shi-Jun Li. Recent advances in network pharmacology applications in Chinese herbal medicine[J]. 1Traditional Medicine Research, 2018, 3(6): 260-272.
[12] Liang-Jun Yang, Dao-Rui Hou, Ya Li, Zhi-Peng Hu, Yong Zhang. A network pharmacology approach to investigate the mechanisms of Si-Jun-Zi decoction in the treatment of gastric precancerous lesions[J]. 1Traditional Medicine Research, 2018, 3(6): 273-285.
[13] Ming Yang, Yi Jin, Li-Ping Yang. Screening for cyclooxygenase 2 inhibitors from natural compounds of Radix Glycyrrhizae using computer simulation[J]. 1Traditional Medicine Research, 2018, 3(3): 115-130.